[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369619
Expansion of (1/x) * Series_Reversion( x / (1/(1-x)^2 + x^2) ).
2
1, 2, 8, 36, 181, 968, 5411, 31230, 184701, 1113534, 6818157, 42283904, 265051573, 1676628944, 10689175724, 68613428764, 443067507573, 2876254564034, 18759923273027, 122876716755094, 807909302669408, 5330342236103396, 35278723624832375
OFFSET
0,2
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(n+1,k) * binomial(3*n-4*k+1,n-2*k).
D-finite with recurrence -4*(101081336359*n -250960227225)*(2*n+1)*(n+2)*(n+1)*a(n) +2*(n+1)*(4508236721003*n^3 -9655124154789*n^2 -3820459908080*n +1505761363350)*a(n-1) +(-23789427607131*n^4 +67773978800606*n^3 +6302004268491*n^2 -64689912723806*n +2007681817800)*a(n-2) +6*(-890478123851*n^4 +42952117976042*n^3 -249768239921769*n^2 +474601169757458*n -268271866959440)*a(n-3) +4*(19581924322759*n^4 -271221111012910*n^3 +1384197210338720*n^2 -3056763018536945*n +2448325905713826)*a(n-4) -8*(n-4) *(15937841315391*n^3 -115485075434884*n^2 +337125583432496*n -379272346578549)*a(n-5) +16*(n-4)*(n-5) *(2696300795657*n^2 -3846744412865*n -4519001936313)*a(n-6) +2720*(105762416493*n -349473414130)*(n-4)*(n-5)*(n-6)*a(n-7)=0. - R. J. Mathar, Jan 28 2024
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x/(1/(1-x)^2+x^2))/x)
(PARI) a(n) = sum(k=0, n\2, binomial(n+1, k)*binomial(3*n-4*k+1, n-2*k))/(n+1);
CROSSREFS
Sequence in context: A129148 A285672 A081958 * A316663 A243948 A001540
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 27 2024
STATUS
approved