[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Revision History for A369619 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Expansion of (1/x) * Series_Reversion( x / (1/(1-x)^2 + x^2) ).
(history; published version)
#11 by R. J. Mathar at Sun Jan 28 09:57:51 EST 2024
STATUS

editing

approved

#10 by R. J. Mathar at Sun Jan 28 09:57:47 EST 2024
FORMULA

D-finite with recurrence -4*(101081336359*n -250960227225)*(2*n+1)*(n+2)*(n+1)*a(n) +2*(n+1)*(4508236721003*n^3 -9655124154789*n^2 -3820459908080*n +1505761363350)*a(n-1) +(-23789427607131*n^4 +67773978800606*n^3 +6302004268491*n^2 -64689912723806*n +2007681817800)*a(n-2) +6*(-890478123851*n^4 +42952117976042*n^3 -249768239921769*n^2 +474601169757458*n -268271866959440)*a(n-3) +4*(19581924322759*n^4 -271221111012910*n^3 +1384197210338720*n^2 -3056763018536945*n +2448325905713826)*a(n-4) -8*(n-4) *(15937841315391*n^3 -115485075434884*n^2 +337125583432496*n -379272346578549)*a(n-5) +16*(n-4)*(n-5) *(2696300795657*n^2 -3846744412865*n -4519001936313)*a(n-6) +2720*(105762416493*n -349473414130)*(n-4)*(n-5)*(n-6)*a(n-7)=0. - R. J. Mathar, Jan 28 2024

STATUS

approved

editing

#9 by Michael De Vlieger at Sun Jan 28 09:19:59 EST 2024
STATUS

reviewed

approved

#8 by Joerg Arndt at Sun Jan 28 06:12:54 EST 2024
STATUS

proposed

reviewed

#7 by Seiichi Manyama at Sun Jan 28 06:12:03 EST 2024
STATUS

editing

proposed

#6 by Seiichi Manyama at Sun Jan 28 02:05:33 EST 2024
FORMULA

a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(n+1,k) * binomial(3*n-4*k+1,n-2*k).

#5 by Seiichi Manyama at Sat Jan 27 20:02:55 EST 2024
CROSSREFS
#4 by Seiichi Manyama at Sat Jan 27 19:57:53 EST 2024
DATA

1, 2, 8, 36, 181, 968, 5411, 31230, 184701, 1113534, 6818157, 42283904, 265051573, 1676628944, 10689175724, 68613428764, 443067507573, 2876254564034, 18759923273027, 122876716755094, 807909302669408, 5330342236103396, 35278723624832375

#3 by Seiichi Manyama at Sat Jan 27 19:40:29 EST 2024
LINKS

<a href="/index/Res#revert">Index entries for reversions of series</a>

#2 by Seiichi Manyama at Sat Jan 27 19:26:27 EST 2024
NAME

allocated for Seiichi Manyama

Expansion of (1/x) * Series_Reversion( x / (1/(1-x)^2 + x^2) ).

DATA

1, 2, 8, 36, 181, 968, 5411, 31230, 184701, 1113534, 6818157, 42283904, 265051573, 1676628944, 10689175724, 68613428764, 443067507573

OFFSET

0,2

PROG

(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x/(1/(1-x)^2+x^2))/x)

(PARI) a(n) = sum(k=0, n\2, binomial(n+1, k)*binomial(3*n-4*k+1, n-2*k))/(n+1);

KEYWORD

allocated

nonn

AUTHOR

Seiichi Manyama, Jan 27 2024

STATUS

approved

editing