editing
approved
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
editing
approved
D-finite with recurrence -4*(101081336359*n -250960227225)*(2*n+1)*(n+2)*(n+1)*a(n) +2*(n+1)*(4508236721003*n^3 -9655124154789*n^2 -3820459908080*n +1505761363350)*a(n-1) +(-23789427607131*n^4 +67773978800606*n^3 +6302004268491*n^2 -64689912723806*n +2007681817800)*a(n-2) +6*(-890478123851*n^4 +42952117976042*n^3 -249768239921769*n^2 +474601169757458*n -268271866959440)*a(n-3) +4*(19581924322759*n^4 -271221111012910*n^3 +1384197210338720*n^2 -3056763018536945*n +2448325905713826)*a(n-4) -8*(n-4) *(15937841315391*n^3 -115485075434884*n^2 +337125583432496*n -379272346578549)*a(n-5) +16*(n-4)*(n-5) *(2696300795657*n^2 -3846744412865*n -4519001936313)*a(n-6) +2720*(105762416493*n -349473414130)*(n-4)*(n-5)*(n-6)*a(n-7)=0. - R. J. Mathar, Jan 28 2024
approved
editing
reviewed
approved
proposed
reviewed
editing
proposed
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(n+1,k) * binomial(3*n-4*k+1,n-2*k).
1, 2, 8, 36, 181, 968, 5411, 31230, 184701, 1113534, 6818157, 42283904, 265051573, 1676628944, 10689175724, 68613428764, 443067507573, 2876254564034, 18759923273027, 122876716755094, 807909302669408, 5330342236103396, 35278723624832375
<a href="/index/Res#revert">Index entries for reversions of series</a>
allocated for Seiichi Manyama
Expansion of (1/x) * Series_Reversion( x / (1/(1-x)^2 + x^2) ).
1, 2, 8, 36, 181, 968, 5411, 31230, 184701, 1113534, 6818157, 42283904, 265051573, 1676628944, 10689175724, 68613428764, 443067507573
0,2
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x/(1/(1-x)^2+x^2))/x)
(PARI) a(n) = sum(k=0, n\2, binomial(n+1, k)*binomial(3*n-4*k+1, n-2*k))/(n+1);
allocated
nonn
Seiichi Manyama, Jan 27 2024
approved
editing