OFFSET
0,3
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(n+1,k) * binomial(2*n-3*k,n-2*k).
D-finite with recurrence +(n+2)*(n+1)*a(n) -(n+1)*(13*n-4)*a(n-1) +2*(26*n^2-36*n+1)*a(n-2) +(-61*n^2+219*n-176)*a(n-3) +2*(-26*n^2+78*n-7)*a(n-4) +(235*n-497)*(n-4)*a(n-5) -93*(n-4)*(n-5)*a(n-6)=0. - R. J. Mathar, Jan 28 2024
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x/(1/(1-x)+x^2))/x)
(PARI) a(n) = sum(k=0, n\2, binomial(n+1, k)*binomial(2*n-3*k, n-2*k))/(n+1);
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 27 2024
STATUS
approved