[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a369619 -id:a369619
     Sort: relevance | references | number | modified | created      Format: long | short | data
Expansion of (1/x) * Series_Reversion( x / (1/(1-x) + x^2) ).
+10
2
1, 1, 3, 8, 26, 87, 308, 1122, 4196, 15995, 61953, 243091, 964307, 3860820, 15581231, 63318119, 258874412, 1064093055, 4394851631, 18229191263, 75904152261, 317161817092, 1329465389854, 5589012748902, 23558679647629, 99548061405442, 421598837336178
OFFSET
0,3
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(n+1,k) * binomial(2*n-3*k,n-2*k).
D-finite with recurrence +(n+2)*(n+1)*a(n) -(n+1)*(13*n-4)*a(n-1) +2*(26*n^2-36*n+1)*a(n-2) +(-61*n^2+219*n-176)*a(n-3) +2*(-26*n^2+78*n-7)*a(n-4) +(235*n-497)*(n-4)*a(n-5) -93*(n-4)*(n-5)*a(n-6)=0. - R. J. Mathar, Jan 28 2024
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x/(1/(1-x)+x^2))/x)
(PARI) a(n) = sum(k=0, n\2, binomial(n+1, k)*binomial(2*n-3*k, n-2*k))/(n+1);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 27 2024
STATUS
approved
Expansion of (1/x) * Series_Reversion( x / (1/(1-x)^3 + x^2) ).
+10
2
1, 3, 16, 100, 692, 5099, 39240, 311700, 2536490, 21037102, 177176745, 1511211409, 13027296723, 113319727772, 993422328313, 8768003882546, 77848008692270, 694828468698510, 6230785015298952, 56109079416527835, 507188912618646021, 4600432953729579585
OFFSET
0,2
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(n+1,k) * binomial(4*n-5*k+2,n-2*k).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x/(1/(1-x)^3+x^2))/x)
(PARI) a(n) = sum(k=0, n\2, binomial(n+1, k)*binomial(4*n-5*k+2, n-2*k))/(n+1);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 27 2024
STATUS
approved

Search completed in 0.008 seconds