[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369617
Expansion of (1/x) * Series_Reversion( x / (1/(1-x)^3 + x) ).
3
1, 4, 22, 146, 1079, 8525, 70468, 601816, 5268241, 47019566, 426250277, 3914020148, 36328457669, 340278596273, 3212416054283, 30534649412247, 291981031204917, 2806832429353512, 27109863184695640, 262951127248539898, 2560229132085602215
OFFSET
0,2
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(n+1,k) * binomial(4*n-4*k+2,n-k).
D-finite with recurrence 3*(3*n+2)*(3*n+1)*(n+1)*a(n) +4*(-91*n^3 -32*n^2 +n+2)*a(n-1) +2*(n-1)*(465*n^2 -337*n+86)*a(n-2) -4*(n-1)*(n-2) *(219*n-187)*a(n-3) +283*(n-1)*(n-2)*(n-3)*a(n-4)=0. - R. J. Mathar, Jan 28 2024
MAPLE
A369617 := proc(n)
add(binomial(n+1, k) * binomial(4*n-4*k+2, n-k), k=0..n) ;
%/(n+1) ;
end proc;
seq(A369617(n), n=0..70) ; # R. J. Mathar, Jan 28 2024
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x/(1/(1-x)^3+x))/x)
(PARI) a(n) = sum(k=0, n, binomial(n+1, k)*binomial(4*n-4*k+2, n-k))/(n+1);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 27 2024
STATUS
approved