[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285672
Number of permutations p of [n] avoiding consecutive odd sums i+p(i), (i+1)+p(i+1) for all i in [n-1].
3
1, 1, 1, 2, 8, 36, 180, 1008, 6336, 46080, 374400, 3369600, 32659200, 344736000, 3886444800, 47348582400, 611264102400, 8442272563200, 122595843686400, 1890952003584000, 30510694932480000, 520011800985600000, 9231875243458560000, 172292221923655680000
OFFSET
0,4
LINKS
EXAMPLE
a(0) = 1: the empty permutation.
a(1) = 1: 1.
a(2) = 1: 12.
a(3) = 2: 123, 321.
a(4) = 8: 1234, 1432, 2413, 2431, 3214, 3412, 4213, 4231.
a(5) = 36: 12345, 12543, 13524, 13542, 14325, 14523, 15324, 15342, 24135, 24153, 24315, 24351, 24513, 24531, 31524, 31542, 32145, 32541, 34125, 34521, 35124, 35142, 42135, 42153, 42315, 42351, 42513, 42531, 51324, 51342, 52143, 52341, 53124, 53142, 54123, 54321.
MAPLE
b:= proc(n, i, j, p, t) option remember; `if`(n=0, 1,
`if`(i=0 or t=1 and p=1, 0, i*b(n-1, i-1, j, 1-p, p))+
`if`(j=0 or t=1 and p=0, 0, j*b(n-1, i, j-1, 1-p, 1-p)))
end:
a:= n-> b(n, floor(n/2), ceil(n/2), 1, 0):
seq(a(n), n=0..25);
MATHEMATICA
b[n_, i_, j_, p_, t_] := b[n, i, j, p, t] =
If[n==0, 1, If[i==0 || t ==1 && p==1, 0, i*b[n-1, i-1, j, 1-p, p]] +
If[j==0 || t==1 && p==0, 0, j*b[n-1, i, j-1, 1-p, 1-p]]];
a[n_] := b[n, Floor[n/2], Ceiling[n/2], 1, 0];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Aug 30 2021, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A227791 A245102 A129148 * A081958 A369619 A316663
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 24 2017
STATUS
approved