[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176606
Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=3, k=0 and l=1.
2
1, 3, 7, 24, 91, 376, 1635, 7377, 34197, 161876, 779125, 3801307, 18757219, 93444662, 469349303, 2374206202, 12084696935, 61848753886, 318082531211, 1643009103729, 8520055528453, 44338931718570, 231488012768833
OFFSET
0,2
FORMULA
G.f f: f(z)=(1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=0, l=1).
Conjecture: (n+1)*a(n) +2*(-3*n+1)*a(n-1) +(n+3)*a(n-2) +8*(n-3)*a(n-3) +4*(-n+4)*a(n-4)=0. - R. J. Mathar, Feb 29 2016
a(n) = Sum_{k=0..n} (C(k)*Sum_{j=0..n-k} (binomial(k+1,n-k-j)*binomial(-n+ 2*k+2*j,j))). - Vladimir Kruchinin, Apr 15 2016
EXAMPLE
a(2)=2*3+1=7. a(3)=2*1*7+9+1=24. a(4)=2*1*24+2*3*7+1=91.
MAPLE
l:=1: : k := 0 : m:=3:d(0):=1:d(1):=m: for n from 1 to 28 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od :
taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 31); seq(d(n), n=0..29): od;
PROG
(Maxima)
a(n):=sum((binomial(2*k, k)*sum(binomial(k+1, n-k-j)*binomial(-n+2*k+2*j, j), j, 0, n-k))/(k+1), k, 0, n); /* Vladimir Kruchinin, Apr 15 2016 */
CROSSREFS
Sequence in context: A228992 A246657 A038169 * A007172 A027610 A135688
KEYWORD
easy,nonn
AUTHOR
Richard Choulet, Apr 21 2010
STATUS
approved