[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228992
Denominators of continued fraction transform of Pi.
4
1, 3, 7, 24, 79, 182, 261, 965, 179751, 360467, 900685, 19274852, 20175537, 39450389, 59625926, 99076315, 158702241, 1844800966, 85019546677, 171883894320, 1803858489877, 1975742384197, 5755343258271, 42263145192094, 90281633642459, 403389679761930
OFFSET
1,2
COMMENTS
The function f defined at A229350 is the continued fraction transform; specifically, to define f(x), start with x > 0: let p(i)/q(i), for i >=0, be the convergents to x; then f(x) is the number [p(0)/q(0), p(1)/q(1), p(2)/q(2), ... ].
EXAMPLE
The first 5 convergents to f(Pi) are 3/1, 10/3, 23/7, 79/24, 260/79.
MATHEMATICA
$MaxExtraPrecision = Infinity;
z = 600; x[0] = Pi; c[0] = Convergents[x[0], z]; x[n_] := N[FromContinuedFraction[c[n - 1]], 80]; c[n_] := Convergents[x[n]]; Table[x[n], {n, 1, 20}] (* A228492, f(Pi), f(f(Pi)), ... *)
t1 = RealDigits[x[1]] (* f(Pi), A228493 *)
t2 = Numerator[c[1]] (* A228992 *)
t3 = Denominator[c[1]] (* A228993 *)
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Clark Kimberling, Oct 01 2013
STATUS
approved