[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a176606 -id:a176606
     Sort: relevance | references | number | modified | created      Format: long | short | data
Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=4, k=0 and l=1.
+10
1
1, 4, 9, 35, 143, 648, 3071, 15126, 76495, 395086, 2074699, 11044027, 59457897, 323180520, 1771081641, 9774955015, 54286011887, 303138215322, 1701016909235, 9586701364893, 54241695455421, 307991483403216, 1754468491846461
OFFSET
0,2
FORMULA
G.f: f(z)=(1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=0, l=1).
Conjecture: (n+1)*a(n) +2*(-3*n+1)*a(n-1) +(-3*n+11)*a(n-2) +16*(n-3)*a(n-3) +8*(-n+4)*a(n-4)=0. - R. J. Mathar, Feb 29 2016
a(n) = Sum_{k=0..n}((C(k)*Sum_{l=0..n-k}(binomial(k+1,l)*2^l*binomial(n-2*l,n-l-k)))), where C(k) is a Catalan number (A000108). - Vladimir Kruchinin, Mar 15 2016
EXAMPLE
a(2)=2*1*4+1+9. a(3)=2*1*9+4^2+1=35.
MAPLE
l:=1: : k := 0 : m:=4: d(0):=1:d(1):=m: for n from 1 to 28 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od :
taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 31); seq(d(n), n=0..29) ;
PROG
(Maxima)
a(n):=sum((binomial(2*k, k)/(k+1)*sum(binomial(k+1, l)*2^l*binomial(n-2*l, n-l-k), l, 0, n-k)), k, 0, n); /* Vladimir Kruchinin, Mar 15 2016 */
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Richard Choulet, Apr 21 2010
STATUS
approved
Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=5, k=0 and l=1.
+10
1
1, 5, 11, 48, 207, 1016, 5159, 27337, 148489, 824232, 4650657, 26602827, 153900879, 898909266, 5293577451, 31395570786, 187364023083, 1124308178270, 6779554362911, 41059231942321, 249646266800185, 1523286825246798
OFFSET
0,2
FORMULA
G.f f: f(z)=(1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=0, l=1).
Conjecture: (n+1)*a(n) +2*(-3*n+1)*a(n-1) +(-7*n+19)*a(n-2) +24*(n-3)*a(n-3) +12*(-n+4)*a(n-4)=0. - R. J. Mathar, Mar 01 2016
EXAMPLE
a(2)=2*1*5+1=11. a(3)=2*1*11+5^2+1=48.
MAPLE
l:=1: : k := 0 : m :=5: d(0):=1:d(1):=m: for n from 1 to 28 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od :
taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 31); seq(d(n), n=0..29);
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Richard Choulet, Apr 21 2010
STATUS
approved

Search completed in 0.007 seconds