proposed
approved
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
proposed
approved
editing
proposed
a(n) = Sum_{k=0..n} (C(k)*Sum_{j=0..n-k} (binomial(k+1,n-k-j)*binomial(-n+ 2*k+2*j,j))). - Vladimir Kruchinin, Apr 15 2016
(Maxima)
a(n):=sum((binomial(2*k, k)*sum(binomial(k+1, n-k-j)*binomial(-n+2*k+2*j, j), j, 0, n-k))/(k+1), k, 0, n); /* Vladimir Kruchinin, Apr 15 2016 */
approved
editing
proposed
approved
editing
proposed
Conjecture: (n+1)*a(n) +2*(-3*n+1)*a(n-1) +(n+3)*a(n-2) +8*(n-3)*a(n-3) +4*(-n+4)*a(n-4)=0. - R. J. Mathar, Feb 29 2016
approved
editing
_Richard Choulet (richardchoulet(AT)yahoo.fr), _, Apr 21 2010
Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=3, k=0 and l=1.
1, 3, 7, 24, 91, 376, 1635, 7377, 34197, 161876, 779125, 3801307, 18757219, 93444662, 469349303, 2374206202, 12084696935, 61848753886, 318082531211, 1643009103729, 8520055528453, 44338931718570, 231488012768833
0,2
G.f f: f(z)=(1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=0, l=1).
a(2)=2*3+1=7. a(3)=2*1*7+9+1=24. a(4)=2*1*24+2*3*7+1=91.
l:=1: : k := 0 : m:=3:d(0):=1:d(1):=m: for n from 1 to 28 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od :
taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 31); seq(d(n), n=0..29): od;
easy,nonn
Richard Choulet (richardchoulet(AT)yahoo.fr), Apr 21 2010
approved