[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Revision History for A176606 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=3, k=0 and l=1.
(history; published version)
#8 by N. J. A. Sloane at Fri Apr 15 13:47:03 EDT 2016
STATUS

proposed

approved

#7 by Vladimir Kruchinin at Fri Apr 15 11:05:39 EDT 2016
STATUS

editing

proposed

#6 by Vladimir Kruchinin at Fri Apr 15 11:05:34 EDT 2016
FORMULA

a(n) = Sum_{k=0..n} (C(k)*Sum_{j=0..n-k} (binomial(k+1,n-k-j)*binomial(-n+ 2*k+2*j,j))). - Vladimir Kruchinin, Apr 15 2016

PROG

(Maxima)

a(n):=sum((binomial(2*k, k)*sum(binomial(k+1, n-k-j)*binomial(-n+2*k+2*j, j), j, 0, n-k))/(k+1), k, 0, n); /* Vladimir Kruchinin, Apr 15 2016 */

STATUS

approved

editing

#5 by R. J. Mathar at Mon Feb 29 14:19:59 EST 2016
STATUS

proposed

approved

#4 by R. J. Mathar at Mon Feb 29 13:33:57 EST 2016
STATUS

editing

proposed

#3 by R. J. Mathar at Mon Feb 29 13:33:53 EST 2016
FORMULA

Conjecture: (n+1)*a(n) +2*(-3*n+1)*a(n-1) +(n+3)*a(n-2) +8*(n-3)*a(n-3) +4*(-n+4)*a(n-4)=0. - R. J. Mathar, Feb 29 2016

STATUS

approved

editing

#2 by Charles R Greathouse IV at Wed Dec 19 15:50:23 EST 2012
AUTHOR

_Richard Choulet (richardchoulet(AT)yahoo.fr), _, Apr 21 2010

Discussion
Wed Dec 19
15:50
OEIS Server: https://oeis.org/edit/global/1844
#1 by N. J. A. Sloane at Tue Jun 01 03:00:00 EDT 2010
NAME

Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=3, k=0 and l=1.

DATA

1, 3, 7, 24, 91, 376, 1635, 7377, 34197, 161876, 779125, 3801307, 18757219, 93444662, 469349303, 2374206202, 12084696935, 61848753886, 318082531211, 1643009103729, 8520055528453, 44338931718570, 231488012768833

OFFSET

0,2

FORMULA

G.f f: f(z)=(1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=0, l=1).

EXAMPLE

a(2)=2*3+1=7. a(3)=2*1*7+9+1=24. a(4)=2*1*24+2*3*7+1=91.

MAPLE

l:=1: : k := 0 : m:=3:d(0):=1:d(1):=m: for n from 1 to 28 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od :

taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 31); seq(d(n), n=0..29): od;

CROSSREFS
KEYWORD

easy,nonn

AUTHOR

Richard Choulet (richardchoulet(AT)yahoo.fr), Apr 21 2010

STATUS

approved