# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a176606 Showing 1-1 of 1 %I A176606 #8 Apr 15 2016 13:47:03 %S A176606 1,3,7,24,91,376,1635,7377,34197,161876,779125,3801307,18757219, %T A176606 93444662,469349303,2374206202,12084696935,61848753886,318082531211, %U A176606 1643009103729,8520055528453,44338931718570,231488012768833 %N A176606 Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=3, k=0 and l=1. %F A176606 G.f f: f(z)=(1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=0, l=1). %F A176606 Conjecture: (n+1)*a(n) +2*(-3*n+1)*a(n-1) +(n+3)*a(n-2) +8*(n-3)*a(n-3) +4*(-n+4)*a(n-4)=0. - _R. J. Mathar_, Feb 29 2016 %F A176606 a(n) = Sum_{k=0..n} (C(k)*Sum_{j=0..n-k} (binomial(k+1,n-k-j)*binomial(-n+ 2*k+2*j,j))). - _Vladimir Kruchinin_, Apr 15 2016 %e A176606 a(2)=2*3+1=7. a(3)=2*1*7+9+1=24. a(4)=2*1*24+2*3*7+1=91. %p A176606 l:=1: : k := 0 : m:=3:d(0):=1:d(1):=m: for n from 1 to 28 do d(n+1):=sum(d(p)*d(n-p)+k,p=0..n)+l:od : %p A176606 taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z),z=0,31);seq(d(n),n=0..29): od; %o A176606 (Maxima) %o A176606 a(n):=sum((binomial(2*k,k)*sum(binomial(k+1,n-k-j)*binomial(-n+2*k+2*j,j),j,0,n-k))/(k+1),k,0,n); /* _Vladimir Kruchinin_, Apr 15 2016 */ %Y A176606 Cf. A176604, A176605. %K A176606 easy,nonn %O A176606 0,2 %A A176606 _Richard Choulet_, Apr 21 2010 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE