[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276870
First differences of the Beatty sequence A110117 for sqrt(2) + sqrt(3).
3
3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3
OFFSET
1,1
LINKS
FORMULA
a(n) = floor(n*r) - floor(n*r - r), where r = sqrt(2) + sqrt(3), n >= 1.
MATHEMATICA
z = 500; r = Sqrt[2]+Sqrt[3]; b = Table[Floor[k*r], {k, 0, z}] (* A110117 *)
Differences[b] (* A276870 *)
PROG
(PARI) vector(100, n, floor(n*(sqrt(2) + sqrt(3))) - floor((n-1)*(sqrt(2)+sqrt(3)))) \\ G. C. Greubel, Aug 16 2018
(Magma) [Floor(n*(Sqrt(2) + Sqrt(3))) - Floor((n-1)*(Sqrt(2) + Sqrt(3))): n in [1..100]]; // G. C. Greubel, Aug 16 2018
CROSSREFS
Sequence in context: A237117 A247970 A063438 * A081168 A301415 A210509
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Sep 26 2016
STATUS
approved