[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Differences of Beatty sequence for square root of 10.
4

%I #26 Jan 17 2024 01:52:40

%S 3,3,3,3,3,3,4,3,3,3,3,3,4,3,3,3,3,3,4,3,3,3,3,3,4,3,3,3,3,3,4,3,3,3,

%T 3,3,4,3,3,3,3,3,3,4,3,3,3,3,3,4,3,3,3,3,3,4,3,3,3,3,3,4,3,3,3,3,3,4,

%U 3,3,3,3,3,4,3,3,3,3,3,3,4,3,3,3,3,3,4,3,3,3,3,3,4,3,3,3,3,3,4,3,3,3,3,3,4

%N Differences of Beatty sequence for square root of 10.

%C Let S(0) = 3; obtain S(k) from S(k-1) by applying the morphism 3 -> 333334, 4 -> 3333334; sequence is S(0), S(1), S(2), ...

%C More generally, for a(n,m) = floor((n+1)*sqrt(m^2+ 1)) - floor(n*sqrt(m^2+1)) start with m and apply the morphism: m -> m^(2m-1), m+1; m+1 -> m^(2m), m+1.

%H G. C. Greubel, <a href="/A081168/b081168.txt">Table of n, a(n) for n = 0..10000</a>

%F a(n) = floor((n+1)*sqrt(10)) - floor(n*sqrt(10)).

%t Differences[Floor[Sqrt[10]*Range[0, 120]]] (* _G. C. Greubel_, Jan 15 2024 *)

%o (PARI) a(n)=floor((n+1)*sqrt(10))-floor(n*sqrt(10))

%o (Magma)

%o A081168:= func< n | Floor((n+1)*Sqrt(10)) - Floor(n*Sqrt(10)) >;

%o [A081168(n): n in [0..120]]; // _G. C. Greubel_, Jan 15 2024

%o (SageMath)

%o def A081168(n): return floor((n+1)*sqrt(10)) - floor(n*sqrt(10))

%o [A081168(n) for n in range(121)] # _G. C. Greubel_, Jan 15 2024

%Y Cf. A010467, A006337, A177102.

%K nonn

%O 0,1

%A _Benoit Cloitre_, Apr 16 2003