OFFSET
1,1
COMMENTS
Continued fraction expansion is 3 followed by {6} repeated. - Harry J. Smith, Jun 02 2009
In 1594, Joseph Scaliger claimed Pi = sqrt(10), but Ludolph van Ceulen immediately knew this to be wrong. - Alonso del Arte, Jan 17 2013
The 7th-century Hindu mathematician Brahmagupta used this constant as value of Pi. - Stefano Spezia, Jul 08 2022
REFERENCES
Petr Beckmann, A History of Pi, 3rd Ed., Boulder, Colorado: The Golem Press (1974): p. 27.
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 55.
LINKS
Harry J. Smith, Table of n, a(n) for n = 1..20000
Josep M. Brunat and Joan-Carles Lario, A problem on concatenated integers, arXiv:2103.05306 [math.NT], 2021. For 1/sqrt(10).
Jason Kimberley, Index of expansions of sqrt(d) in base b.
Robert Nemiroff and Jerry Bonnell, The first 1 million digits of square root of 10.
Robert Nemiroff and Jerry Bonnell, Plouffe's Inverter, The first 1 million digits of square root of 10.
J. J. O'Connor and E. F. Robertson, Ludolph Van Ceulen.
FORMULA
Sqrt(10) = sqrt(1 + i*sqrt(15)) + sqrt(1 - i*sqrt(15)) = sqrt(1/2 + 2*i*sqrt(5)) + sqrt(1/2 - 2*i*sqrt(5)), where i = sqrt(-1). - Bruno Berselli, Nov 20 2012
Equals 1/sqrt(10), with offset 0. - Michel Marcus, Mar 10 2021
Equals 2 + Sum_{k>=1} Lucas(k)*binomial(2*k,k)/8^k. - Amiram Eldar, Jan 17 2022
a(k) = floor(Sum_{n>=1} A005875(n)/exp(Pi*n/(10^((2/3)*k+(1/3))))) mod 10. Will give the k-th decimal digit of sqrt(10). A005875 : number of ways to write n as sum of 3 squares. - Simon Plouffe, Dec 30 2023
EXAMPLE
3.162277660168379331998893544432718533719555139325216826857504852792594...
MATHEMATICA
RealDigits[N[Sqrt[10], 200]] (* Vladimir Joseph Stephan Orlovsky, May 27 2010 *)
PROG
(PARI) default(realprecision, 20080); x=sqrt(10); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b010467.txt", n, " ", d)); \\ Harry J. Smith, Jun 02 2009
(Magma) SetDefaultRealField(RealField(100)); Sqrt(10); // Vincenzo Librandi, Feb 15 2020
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
STATUS
approved