[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A079128
Number of degree-n permutations with (mutually) relatively prime cycle lengths.
6
1, 1, 4, 15, 96, 455, 4320, 29295, 300160, 2663199, 36288000, 348523175, 5748019200, 68027248575, 1116542242816, 16813959537375, 334764638208000, 4954072089341375, 115242726703104000, 1966765155600364119, 45415699475660800000, 930312555383281809375
OFFSET
1,3
COMMENTS
a(p) = p!-(p-1)! for prime p. Conjecture: a(n) is divisible by n^2-1 for n>3.
Conjecture: gcd(a(n),n)=1. - Vladeta Jovovic, Jan 25 2003
LINKS
MAPLE
with(combinat):
b:= proc(n, i, g) option remember; `if`(n=0, `if`(g>=2, 1, 0),
`if`(i<2, 0, b(n, i-1, g) +`if`(igcd(g, i)<2, 0,
add((i-1)!^j/j! *multinomial(n, i$j, n-i*j)*
b(n-i*j, i-1, igcd(i, g)), j=1..n/i))))
end:
a:= n-> n!-b(n, n, 0):
seq(a(n), n=1..25); # Alois P. Heinz, Jun 06 2013
# second Maple program:
b:= proc(n, g) option remember; `if`(n=0, `if`(g=1, 1, 0), add(
(j-1)!*b(n-j, igcd(g, j))*binomial(n-1, j-1), j=1..n))
end:
a:= n-> b(n, 0):
seq(a(n), n=1..25); # Alois P. Heinz, Jul 03 2021
MATHEMATICA
f[list_] :=
Total[list]!/Apply[Times, Table[list[[i]], {i, 1, Length[list]}]]/
Apply[Times, Select[Table[Count[list, i], {i, 1, Total[list]}], # > 0 &]!];
Table[Total[Map[f, Select[IntegerPartitions[n], Apply[GCD, #] == 1 &]]], {n, 1, 25}] (* Geoffrey Critzer, Jun 06 2013 *)
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, g_] := b[n, i, g] = If[n==0, If[g >= 2, 1, 0], If[i<2, 0, b[n, i-1, g] + If[GCD[g, i]<2, 0, Sum[(i-1)!^j/j!*multinomial[n, Append[Array[i&, j], n-i*j]]*b[n-i*j, i-1, GCD[i, g]], {j, 1, n/i}]]]]; a[n_] := n! - b[n, n, 0]; Table[a[n], {n, 1, 25}] (* Jean-François Alcover, Jan 08 2016, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved