[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289489
Number of permutations p of [n] such that in 0p the sum of all jumps equals 2n.
2
1, 0, 0, 1, 4, 15, 104, 644, 3696, 23388, 151842, 979110, 6445659, 43148963, 290832906, 1977914328, 13574296048, 93787977144, 651970844448, 4558718881927, 32038664402074, 226200869873851, 1603811085640698, 11415385190127413, 81538284501095235
OFFSET
0,5
COMMENTS
An up-jump j occurs at position i in p if p_{i} > p_{i-1} and j is the index of p_i in the increasingly sorted list of those elements in {p_{i}, ..., p_{n}} that are larger than p_{i-1}. A down-jump j occurs at position i in p if p_{i} < p_{i-1} and j is the index of p_i in the decreasingly sorted list of those elements in {p_{i}, ..., p_{n}} that are smaller than p_{i-1}. First index in the lists is 1 here.
LINKS
FORMULA
a(n) = A291722(n,n).
a(n) ~ c * d^n / n^2, where d = 7.7572369635460295... and c = 0.022080578979754... - Vaclav Kotesovec, Nov 17 2022
EXAMPLE
a(3) = 1: 312.
a(4) = 4: 3142, 4213, 4231, 4312.
a(5) = 15: 15234, 25134, 31542, 35124, 41235, 42153, 42531, 43152, 45123, 53214, 53241, 53421, 54213, 54231, 54312.
a(6) = 104: 126354, 136254, 142635, 146253, ..., 653421, 654213, 654231, 654312.
MAPLE
b:= proc(u, o) option remember; expand(`if`(u+o=0, 1,
add(b(u-j, o+j-1)*x^(j-1), j=1..u)+
add(b(u+j-1, o-j)*x^(j-1), j=1..o)))
end:
a:= n-> coeff(b(0, n), x, n):
seq(a(n), n=0..26);
MATHEMATICA
b[u_, o_] := b[u, o] = Expand[If[u + o == 0, 1,
Sum[b[u - j, o + j - 1]*x^(j - 1), {j, 1, u}] +
Sum[b[u + j - 1, o - j]*x^(j - 1), {j, 1, o}]]];
a[n_] := Coefficient[b[0, n], x, n];
Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Nov 17 2022, after Alois P. Heinz *)
CROSSREFS
Cf. A291722.
Sequence in context: A079128 A377326 A356524 * A221095 A339287 A081548
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 02 2017
STATUS
approved