[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a079128 -id:a079128
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of aperiodic permutations of {1..n}.
+10
7
1, 0, 3, 16, 115, 660, 5033, 39936, 362718, 3624920, 39916789, 478953648, 6227020787, 87177645996, 1307674338105, 20922779566080, 355687428095983, 6402373519409856, 121645100408831981, 2432902004460734000, 51090942171698415483, 1124000727695858073380
OFFSET
1,3
COMMENTS
A permutation is defined to be aperiodic if every cyclic rotation of {1..n} acts on the cycle decomposition to produce a different digraph.
FORMULA
a(n) = A306669(n) * n.
a(n) = Sum_{d|n} mu(n/d)*(n/d)^d*d!. - Andrew Howroyd, Aug 19 2019
EXAMPLE
The a(4) = 16 aperiodic permutations:
(1243) (1324) (1342) (1423)
(2134) (2314) (2413) (2431)
(3124) (3142) (3241) (3421)
(4132) (4213) (4231) (4312)
MATHEMATICA
Table[Length[Select[Permutations[Range[n]], UnsameQ@@NestList[RotateRight[#/.k_Integer:>If[k==n, 1, k+1]]&, #, n-1]&]], {n, 6}]
PROG
(PARI) a(n) = sumdiv(n, d, moebius(n/d)*(n/d)^d*d!); \\ Andrew Howroyd, Aug 19 2019
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 04 2019
EXTENSIONS
Terms a(10) and beyond from Andrew Howroyd, Aug 19 2019
STATUS
approved
Number T(n,k) of permutations of [n] such that k is the GCD of the cycle lengths; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
+10
5
1, 0, 1, 0, 1, 1, 0, 4, 0, 2, 0, 15, 3, 0, 6, 0, 96, 0, 0, 0, 24, 0, 455, 105, 40, 0, 0, 120, 0, 4320, 0, 0, 0, 0, 0, 720, 0, 29295, 4725, 0, 1260, 0, 0, 0, 5040, 0, 300160, 0, 22400, 0, 0, 0, 0, 0, 40320, 0, 2663199, 530145, 0, 0, 72576, 0, 0, 0, 0, 362880
OFFSET
0,8
LINKS
Wikipedia, Permutation
FORMULA
Sum_{k=1..n} k * T(n,k) = A346066(n).
Sum_{prime p <= n} T(n,p) = A359951(n). - Alois P. Heinz, Jan 20 2023
EXAMPLE
T(3,1) = 4: (1)(23), (13)(2), (12)(3), (1)(2)(3).
T(4,4) = 6: (1234), (1243), (1324), (1342), (1423), (1432).
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 4, 0, 2;
0, 15, 3, 0, 6;
0, 96, 0, 0, 0, 24;
0, 455, 105, 40, 0, 0, 120;
0, 4320, 0, 0, 0, 0, 0, 720;
0, 29295, 4725, 0, 1260, 0, 0, 0, 5040;
0, 300160, 0, 22400, 0, 0, 0, 0, 0, 40320;
0, 2663199, 530145, 0, 0, 72576, 0, 0, 0, 0, 362880;
...
MAPLE
b:= proc(n, g) option remember; `if`(n=0, x^g, add((j-1)!
*b(n-j, igcd(g, j))*binomial(n-1, j-1), j=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 0)):
seq(T(n), n=0..12);
MATHEMATICA
b[n_, g_] := b[n, g] = If[n == 0, x^g, Sum[(j - 1)!*
b[n - j, GCD[g, j]] Binomial[n - 1, j - 1], {j, n}]];
T[n_] := CoefficientList[b[n, 0], x];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Aug 30 2021, after Alois P. Heinz *)
CROSSREFS
Columns k=0-1 give: A000007, A079128.
Even bisection of column k=2 gives A346086.
Row sums give A000142.
T(2n,n) gives A110468(n-1) for n >= 1.
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jul 04 2021
STATUS
approved
Number of n-permutations such that all cycle lengths have a common divisor >= 2.
+10
3
0, 0, 1, 2, 9, 24, 265, 720, 11025, 62720, 965601, 3628800, 130478425, 479001600, 19151042625, 191132125184, 4108830350625, 20922789888000, 1448301616386625, 6402373705728000, 466136852576275881, 5675242696048640000, 193688172394325870625, 1124000727777607680000
OFFSET
0,4
COMMENTS
a(p) = (p-1)! for p a prime.
LINKS
FORMULA
a(n) = n! - A079128(n) for n >= 1. - Alois P. Heinz, Jul 04 2021
EXAMPLE
a(6) = 265 counting permutations with cycle types: 6; 4-2; 3-3; 2-2-2; of which there are 120 + 90 + 40 + 15 = 265.
MAPLE
with(combinat):
b:= proc(n, i, g) option remember; `if`(n=0, `if`(g>1, 1, 0),
`if`(i<2, 0, b(n, i-1, g) +`if`(igcd(g, i)<2, 0,
add((i-1)!^j/j! *multinomial(n, i$j, n-i*j)*
b(n-i*j, i-1, igcd(i, g)), j=1..n/i))))
end:
a:= n-> b(n, n, 0):
seq(a(n), n=0..30); # Alois P. Heinz, Jun 06 2013
# second Maple program:
b:= proc(n, g) option remember; `if`(n=0, `if`(g>1, 1, 0), add(
(j-1)!*b(n-j, igcd(g, j))*binomial(n-1, j-1), j=1..n))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..30); # Alois P. Heinz, Jul 04 2021
MATHEMATICA
f[list_] :=
Total[list]!/Apply[Times, Table[list[[i]], {i, 1, Length[list]}]]/
Apply[Times,
Select[Table[
Count[list, i], {i, 1, Total[list]}], # > 0 &]!]; Table[
Total[Map[f, Select[Partitions[n], Apply[GCD, #] > 1 &]]], {n, 0,
25}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Jun 05 2013
STATUS
approved
Number of degree-n permutations with pairwise coprime cycle lengths.
+10
2
1, 1, 2, 6, 21, 105, 530, 3710, 27265, 229705, 2083354, 24025694, 263359173, 3457302849, 44575118874, 600902614598, 9242750538593, 169974915437041, 2905860232733458, 56257078771371478, 1041600031067604437, 19990420041926339577, 419763750266646291714
OFFSET
0,3
LINKS
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Alois P. Heinz, Jan 10 2014
STATUS
approved
Number of permutations of [n] such that the GCD of the cycle lengths is a prime.
+10
2
0, 0, 1, 2, 3, 24, 145, 720, 4725, 22400, 602721, 3628800, 67692625, 479001600, 12924021825, 103953833984, 2116670180625, 20922789888000, 959231402754625, 6402373705728000, 257071215652932681, 3242340687872000000, 142597230222616430625, 1124000727777607680000
OFFSET
0,4
LINKS
Wikipedia, Permutation
FORMULA
a(n) = Sum_{prime p <= n} A346085(n,p).
a(p) = (p-1)! for prime p.
EXAMPLE
a(2) = 1: (12).
a(3) = 2: (123), (132).
a(4) = 3: (12)(34), (13)(24), (14)(23).
a(5) = 24: (12345), (12354), (12435), (12453), (12534), (12543), (13245), (13254), (13425), (13452), (13524), (13542), (14235), (14253), (14325), (14352), (14523), (14532), (15234), (15243), (15324), (15342), (15423), (15432).
MAPLE
b:= proc(n, g) option remember; `if`(n=0, `if`(isprime(g), 1, 0),
add(b(n-j, igcd(j, g))*(n-1)!/(n-j)!, j=1..n))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..23);
MATHEMATICA
b[n_, g_] := b[n, g] = If[n == 0, If[PrimeQ[g], 1, 0], Sum[b[n - j, GCD[j, g]]*(n - 1)!/(n - j)!, {j, 1, n}]];
a[n_] := b[n, 0];
Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Dec 13 2023, after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jan 19 2023
STATUS
approved

Search completed in 0.082 seconds