[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352415
G.f. A(x) satisfies: A(x)^6 = (1-x) * (A(x) + x)^5.
2
1, 4, -15, 95, -815, 7881, -81946, 894100, -10097235, 117019845, -1383816039, 16631112009, -202545350505, 2494192904025, -31003553499195, 388498706407341, -4902323847971661, 62240419152427905, -794494411812382465, 10190561785036460125
OFFSET
0,2
FORMULA
G.f. A(x) satisfies:
(1) A(x) = ( A(x)^6/(1-x) )^(1/5) - x.
(2) A(x)^6 = (1-x) * (A(x) + x)^5.
(3) A( x*(1+x)^5/(1 + x*(1+x)^5) ) = (1+x)^5/(1 + x*(1+x)^5).
(4) A(x) = x / Series_Reversion( x*(1+x)^5/(1 + x*(1+x)^5) ).
(5) Sum_{k=0..n} [x^k] A(x)^n = (-1)^(n-1) * 5, for n >= 1.
EXAMPLE
G.f.: A(x) = 1 + 4*x - 15*x^2 + 95*x^3 - 815*x^4 + 7881*x^5 - 81946*x^6 + 894100*x^7 - 10097235*x^8 + ...
where A(x)^6 equals (1-x)*(A(x) + x)^5, as can be seen from the following power series expansions:
A(x)^6 = 1 + 24*x + 150*x^2 + 50*x^3 - 675*x^4 + 480*x^5 - 35*x^6 + 1980*x^7 + ...
(A(x) + x)^5 = 1 + 25*x + 175*x^2 + 225*x^3 - 450*x^4 + 30*x^5 - 5*x^6 + 1975*x^7 + ...
Related table.
Another defining property of the g.f. A(x) is illustrated here.
The table of coefficients of x^k in A(x)^n begins:
n=1: [1, 4, -15, 95, -815, 7881, -81946, 894100, ...];
n=2: [1, 8, -14, 70, -645, 6392, -67369, 741352, ...];
n=3: [1, 12, 3, -11, -210, 2793, -32964, 385869, ...];
n=4: [1, 16, 36, -84, 26, 504, -9506, 135524, ...];
n=5: [1, 20, 85, -85, -145, 129, -1050, 27550, ...];
n=6: [1, 24, 150, 50, -675, 480, -35, 1980, ...];
n=7: [1, 28, 231, 385, -1260, -399, 1708, -689, ...]; ...
in which the partial sum of row n up to column n equals (-1)^(n-1)*5, as illustrated by:
n=1: 5 = 1 + 4;
n=2: -5 = 1 + 8 + -14;
n=3: 5 = 1 + 12 + 3 + -11;
n=4: -5 = 1 + 16 + 36 + -84 + 26;
n=5: 5 = 1 + 20 + 85 + -85 + -145 + 129;
n=6: -5 = 1 + 24 + 150 + 50 + -675 + 480 + -35;
n=7: 5 = 1 + 28 + 231 + 385 + -1260 + -399 + 1708 + -689;
...
PROG
(PARI) {a(n) = polcoeff( x/serreverse( x*(1+x)^5/(1 + x*(1+x)^5 +x^2*O(x^n)) ), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Mar 15 2022
STATUS
approved