[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of degree-n permutations with (mutually) relatively prime cycle lengths.
6

%I #26 Jul 03 2021 17:52:57

%S 1,1,4,15,96,455,4320,29295,300160,2663199,36288000,348523175,

%T 5748019200,68027248575,1116542242816,16813959537375,334764638208000,

%U 4954072089341375,115242726703104000,1966765155600364119,45415699475660800000,930312555383281809375

%N Number of degree-n permutations with (mutually) relatively prime cycle lengths.

%C a(p) = p!-(p-1)! for prime p. Conjecture: a(n) is divisible by n^2-1 for n>3.

%C Conjecture: gcd(a(n),n)=1. - _Vladeta Jovovic_, Jan 25 2003

%H Alois P. Heinz, <a href="/A079128/b079128.txt">Table of n, a(n) for n = 1..450</a>

%p with(combinat):

%p b:= proc(n, i, g) option remember; `if`(n=0, `if`(g>=2, 1, 0),

%p `if`(i<2, 0, b(n, i-1, g) +`if`(igcd(g, i)<2, 0,

%p add((i-1)!^j/j! *multinomial(n, i$j, n-i*j)*

%p b(n-i*j, i-1, igcd(i, g)), j=1..n/i))))

%p end:

%p a:= n-> n!-b(n, n, 0):

%p seq(a(n), n=1..25); # _Alois P. Heinz_, Jun 06 2013

%p # second Maple program:

%p b:= proc(n, g) option remember; `if`(n=0, `if`(g=1, 1, 0), add(

%p (j-1)!*b(n-j, igcd(g, j))*binomial(n-1, j-1), j=1..n))

%p end:

%p a:= n-> b(n, 0):

%p seq(a(n), n=1..25); # _Alois P. Heinz_, Jul 03 2021

%t f[list_] :=

%t Total[list]!/Apply[Times, Table[list[[i]], {i, 1, Length[list]}]]/

%t Apply[Times, Select[Table[Count[list, i], {i, 1, Total[list]}], # > 0 &]!];

%t Table[Total[Map[f, Select[IntegerPartitions[n], Apply[GCD, #] == 1 &]]], {n, 1, 25}] (* _Geoffrey Critzer_, Jun 06 2013 *)

%t multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, g_] := b[n, i, g] = If[n==0, If[g >= 2, 1, 0], If[i<2, 0, b[n, i-1, g] + If[GCD[g, i]<2, 0, Sum[(i-1)!^j/j!*multinomial[n, Append[Array[i&, j], n-i*j]]*b[n-i*j, i-1, GCD[i, g]], {j, 1, n/i}]]]]; a[n_] := n! - b[n, n, 0]; Table[a[n], {n, 1, 25}] (* _Jean-François Alcover_, Jan 08 2016, after _Alois P. Heinz_ *)

%Y Cf. A079129, A000837, A079129, A226388.

%K nonn

%O 1,3

%A _Vladeta Jovovic_, _Vladimir Baltic_, Dec 27 2002