[go: up one dir, main page]

login
A053000
a(n) = (smallest prime > n^2) - n^2.
20
2, 1, 1, 2, 1, 4, 1, 4, 3, 2, 1, 6, 5, 4, 1, 2, 1, 4, 7, 6, 1, 2, 3, 12, 1, 6, 1, 4, 3, 12, 7, 6, 7, 2, 7, 4, 1, 4, 3, 2, 1, 12, 13, 12, 13, 2, 13, 4, 5, 10, 3, 8, 3, 10, 1, 12, 1, 2, 7, 10, 7, 6, 3, 20, 3, 4, 1, 4, 13, 22, 3, 10, 5, 4, 1, 14, 3, 10, 5, 6, 21, 2, 9, 10, 1, 4, 15, 4, 9, 6, 1, 6, 3, 14
OFFSET
0,1
COMMENTS
Suggested by Legendre's conjecture (still open) that there is always a prime between n^2 and (n+1)^2.
Record values are listed in A070317, their indices in A070316. - _M. F. Hasler_, Mar 23 2013
Conjecture: a(n) <= 1+phi(n) = 1+A000010(n), for n>0. This improves on Oppermann's conjecture, which says a(n) < n. - _Jianglin Luo_, Sep 22 2023
REFERENCES
J. R. Goldman, The Queen of Mathematics, 1998, p. 82.
R. K. Guy, Unsolved Problems in Number Theory, Section A1.
FORMULA
a(n) = A013632(n^2). - _Robert Israel_, Jul 06 2015
MAPLE
A053000 := n->nextprime(n^2)-n^2;
MATHEMATICA
nxt[n_]:=Module[{n2=n^2}, NextPrime[n2]-n2]
nxt/@Range[0, 100] (* _Harvey P. Dale_, Dec 20 2010 *)
PROG
(PARI) A053000(n)=nextprime(n^2)-n^2 \\ _M. F. Hasler_, Mar 23 2013
(Magma) [NextPrime(n^2) - n^2: n in [0..100]]; // _Vincenzo Librandi_, Jul 06 2015
(Python)
from sympy import nextprime
def a(n): nn = n*n; return nextprime(nn) - nn
print([a(n) for n in range(94)]) # _Michael S. Branicky_, Feb 17 2022
KEYWORD
nonn,easy,nice
AUTHOR
_N. J. A. Sloane_, Feb 21 2000
EXTENSIONS
More terms from _James A. Sellers_, Feb 22 2000
STATUS
approved