[go: up one dir, main page]

login
Search: a053000 -id:a053000
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of primes between n^2 and (n+1)^2.
+10
114
0, 2, 2, 2, 3, 2, 4, 3, 4, 3, 5, 4, 5, 5, 4, 6, 7, 5, 6, 6, 7, 7, 7, 6, 9, 8, 7, 8, 9, 8, 8, 10, 9, 10, 9, 10, 9, 9, 12, 11, 12, 11, 9, 12, 11, 13, 10, 13, 15, 10, 11, 15, 16, 12, 13, 11, 12, 17, 13, 16, 16, 13, 17, 15, 14, 16, 15, 15, 17, 13, 21, 15, 15, 17, 17, 18, 22, 14, 18, 23, 13
OFFSET
0,2
COMMENTS
Suggested by Legendre's conjecture (still open) that for n > 0 there is always a prime between n^2 and (n+1)^2.
a(n) is the number of occurrences of n in A000006. - Philippe Deléham, Dec 17 2003
See the additional references and links mentioned in A143227. - Jonathan Sondow, Aug 03 2008
Legendre's conjecture may be written pi((n+1)^2) - pi(n^2) > 0 for all positive n, where pi(n) = A000720(n), [the prime counting function]. - Jonathan Vos Post, Jul 30 2008 [Comment corrected by Jonathan Sondow, Aug 15 2008]
Legendre's conjecture can be generalized as follows: for all integers n > 0 and all real numbers k > K, there is a prime in the range n^k to (n+1)^k. The constant K is conjectured to be log(127)/log(16). See A143935. - T. D. Noe, Sep 05 2008
For n > 0: number of occurrences of n^2 in A145445. - Reinhard Zumkeller, Jul 25 2014
REFERENCES
J. R. Goldman, The Queen of Mathematics, 1998, p. 82.
LINKS
Pierre Dusart, The k-th prime is greater than k(ln k + ln ln k-1) for k>=2, Mathematics of Computation 68: (1999), 411-415.
Tsutomu Hashimoto, On a certain relation between Legendre's conjecture and Bertrand's postulate, arXiv:0807.3690 [math.GM], 2008.
M. Hassani, Counting primes in the interval (n^2, (n+1)^2), arXiv:math/0607096 [math.NT], 2006.
Edmund Landau, Gelöste und ungelöste Probleme aus der Theorie der Primzahlverteilung und der Riemannschen Zetafunktion. Jahresbericht der Deutschen Mathematiker-Vereinigung (1912), Vol. 21, page 208-228.
Michael Penn, Legendre's Conjecture is probably true, and here's why, YouTube video, 2023.
Eric Weisstein's World of Mathematics, Legendre's Conjecture
FORMULA
a(n) = A000720((n+1)^2) - A000720(n^2). - Jonathan Vos Post, Jul 30 2008
a(n) = Sum_{k = n^2..(n+1)^2} A010051(k). - Reinhard Zumkeller, Mar 18 2012
Conjecture: for all n>1, abs(a(n)-(n/log(n))) < sqrt(n). - Alain Rocchelli, Sep 20 2023
EXAMPLE
a(17) = 5 because between 17^2 and 18^2, i.e., 289 and 324, there are 5 primes (which are 293, 307, 311, 313, 317).
MATHEMATICA
Table[PrimePi[(n + 1)^2] - PrimePi[n^2], {n, 0, 80}] (* Lei Zhou, Dec 01 2005 *)
Differences[PrimePi[Range[0, 90]^2]] (* Harvey P. Dale, Nov 25 2015 *)
PROG
(PARI) a(n)=primepi((n+1)^2)-primepi(n^2) \\ Charles R Greathouse IV, Jun 15 2011
(Haskell)
a014085 n = sum $ map a010051 [n^2..(n+1)^2]
-- Reinhard Zumkeller, Mar 18 2012
(Python)
from sympy import primepi
def a(n): return primepi((n+1)**2) - primepi(n**2)
print([a(n) for n in range(81)]) # Michael S. Branicky, Jul 05 2021
CROSSREFS
First differences of A038107.
Counts of primes between consecutive higher powers: A060199, A061235, A062517.
KEYWORD
nonn,nice
AUTHOR
Jon Wild, Jul 14 1997
STATUS
approved
Smallest prime > n^2.
(Formerly M1389)
+10
32
2, 5, 11, 17, 29, 37, 53, 67, 83, 101, 127, 149, 173, 197, 227, 257, 293, 331, 367, 401, 443, 487, 541, 577, 631, 677, 733, 787, 853, 907, 967, 1031, 1091, 1163, 1229, 1297, 1373, 1447, 1523, 1601, 1693, 1777, 1861, 1949, 2027, 2129, 2213, 2309, 2411, 2503
OFFSET
1,1
COMMENTS
Suggested by Legendre's conjecture (still open) that there is always a prime between n^2 and (n+1)^2.
Legendre's conjecture is equivalent to a(n) < (n+1)^2. - Jean-Christophe Hervé, Oct 26 2013
From Jaroslav Krizek, Apr 02 2016: (Start)
Conjectures:
1) There is always a prime p between n^2 and n^2+n (verified up to 13*10^6).
2) a(n) is the smallest prime p such that n^2 < p < n^2+n; a(n) < n^2+n.
3) For all numbers k >= 1 there is the smallest number m > 2*(k+1) such that for all numbers n >= m there is always a prime p between n^2 and n^2 + n - 2k. Sequence of numbers m for k >= 1: 6, 8, 12, 13, 14, 24, 24, 24, 30, 30, 30, 31, 33, 35, 43, ...; lim_{k->oo} m/2k = 1. Example: k=2; for all numbers n >= 8 there is always a prime p between n^2 and n^2 + n - 4. (End)
REFERENCES
Archimedeans Problems Drive, Eureka, 24 (1961), 20.
J. R. Goldman, The Queen of Mathematics, 1998, p. 82.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 19.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Jean-Christophe Hervé, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
Eric Weisstein's World of Mathematics, Landau's Problem.
Eric Weisstein's World of Mathematics, Legendre's Conjecture.
FORMULA
a(n) = A007918(A000290(n)). - Reinhard Zumkeller, Jun 07 2015
MAPLE
[seq(nextprime(i^2), i=1..100)];
MATHEMATICA
NextPrime[Range[60]^2] (* Harvey P. Dale, Mar 24 2011 *)
PROG
(PARI) vector(100, i, nextprime(i^2))
(Magma) [NextPrime(n^2): n in [1..50]]; // Vincenzo Librandi, Apr 30 2015
(Haskell)
a007491 = a007918 . a000290 -- Reinhard Zumkeller, Jun 07 2015
(Python)
from sympy import nextprime
def a(n): return nextprime(n**2)
print([a(n) for n in range(1, 51)]) # Michael S. Branicky, Jan 13 2023
CROSSREFS
KEYWORD
nonn,easy,nice
EXTENSIONS
More terms from Labos Elemer, Nov 17 2000
Definition modified by Jean-Christophe Hervé, Oct 26 2013
STATUS
approved
Largest prime < n^2.
+10
25
3, 7, 13, 23, 31, 47, 61, 79, 97, 113, 139, 167, 193, 223, 251, 283, 317, 359, 397, 439, 479, 523, 571, 619, 673, 727, 773, 839, 887, 953, 1021, 1087, 1153, 1223, 1291, 1367, 1439, 1511, 1597, 1669, 1759, 1847, 1933, 2017, 2113, 2207, 2297, 2399, 2477, 2593
OFFSET
2,1
COMMENTS
Suggested by Legendre's conjecture (still open) that there is always a prime between n^2 and (n+1)^2.
Legendre's conjecture is equivalent to a(n) > (n-1)^2. - John W. Nicholson, Dec 11 2013
REFERENCES
J. R. Goldman, The Queen of Mathematics, 1998, p. 82.
FORMULA
a(n) = A007917(A000290(n)). - Reinhard Zumkeller, Jun 07 2015
MAPLE
[seq(prevprime(i^2), i=2..100)];
MATHEMATICA
Table[Prime[PrimePi[n^2]], {n, 2, 60}] (* Stefan Steinerberger, Apr 01 2006 *)
Table[NextPrime[n^2, -1], {n, 2, 60}] (* Jean-François Alcover, Oct 14 2013 *)
PROG
(PARI) a(n) = precprime(n^2) \\ Michel Marcus, Oct 14 2013
(Haskell)
a053001 = a007917 . a000290 -- Reinhard Zumkeller, Jun 07 2015
(Python)
from sympy import prevprime
def a(n): return prevprime(n*n)
print([a(n) for n in range(2, 52)]) # Michael S. Branicky, Jul 29 2022
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
N. J. A. Sloane, Feb 21 2000
EXTENSIONS
More terms from James A. Sellers, Feb 22 2000
STATUS
approved
Smallest integer d such that n^2 + d^2 is a prime number.
+10
19
1, 1, 2, 1, 2, 1, 2, 3, 4, 1, 4, 7, 2, 1, 2, 1, 2, 5, 6, 1, 4, 5, 8, 1, 4, 1, 2, 5, 4, 11, 4, 3, 2, 5, 2, 1, 2, 3, 10, 1, 4, 5, 8, 9, 2, 5, 2, 13, 4, 7, 4, 3, 10, 1, 4, 1, 2, 3, 6, 13, 10, 3, 32, 9, 2, 1, 2, 5, 10, 3, 6, 5, 2, 1, 4, 5, 10, 7, 4, 7, 4, 3, 18, 1, 2, 9, 2, 3, 4, 1, 4, 7, 8, 1, 2, 5, 2, 3, 4, 3
OFFSET
1,3
COMMENTS
With i being the imaginary unit, n + di is the smallest Gaussian prime with real part n and a positive imaginary part. Likewise for n - di. See A002145 for Gaussian primes with imaginary part 0. - Alonso del Arte, Feb 07 2011
Conjecture: a(n) does not exceed 4*sqrt(n+1) for any positive integer n. - Zhi-Wei Sun, Apr 15 2013
Conjecture holds for the first 15*10^6 terms. - Joerg Arndt, Aug 19 2014
Infinitely many d exist such that n^2 + d^2 is prime, under Schinzel's Hypothesis H; see Sierpinski (1988), p. 221. - Jonathan Sondow, Nov 09 2015
REFERENCES
W. Sierpinski, Elementary Theory of Numbers, 2nd English edition, revised and enlarged by A. Schinzel, Elsevier, 1988.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
Eric Weisstein's World of Mathematics, Gaussian Prime.
EXAMPLE
a(5)=2 because 2 is the smallest integer d such that 5^2+d^2 is a prime number.
MAPLE
f:= proc(n) local d;
for d from 1+(n mod 2) by 2 do
if isprime(n^2+d^2) then return d fi
od
end proc:
f(1):= 1:
map(f, [$1..1000]); # Robert Israel, Jul 06 2015
MATHEMATICA
imP4P[n_] := Module[{k = 1}, While[Not[PrimeQ[n^2 + k^2]], k++]; k]; Table[imP4P[n], {n, 50}] (* Alonso del Arte, Feb 07 2011 *)
PROG
(PARI) a(n)=my(k); while(!isprime(n^2+k++^2), ); k \\ Charles R Greathouse IV, Mar 20 2013
CROSSREFS
Cf. A068486 (lists the prime numbers n^2 + d^2).
Cf. A239388, A239389 (record values).
Cf. A053000.
KEYWORD
easy,nonn
AUTHOR
T. D. Noe, Apr 02 2002
STATUS
approved
Least natural number k such that k^2 + n is prime.
+10
13
1, 1, 2, 1, 6, 1, 2, 3, 2, 1, 6, 1, 2, 3, 2, 1, 6, 1, 2, 3, 4, 1, 6, 7, 2, 9, 2, 1, 12, 1, 4, 3, 2, 3, 6, 1, 2, 3, 2, 1, 24, 1, 2, 3, 4, 1, 6, 5, 2, 3, 4, 1, 6, 5, 2, 9, 2, 1, 18, 1, 6, 3, 2, 3, 6, 1, 2, 9, 2, 1, 6, 1, 4, 3, 2, 5, 6, 1, 2, 3, 4, 1, 12, 5, 2
OFFSET
1,3
COMMENTS
First values of k and n such that k > 100 are: k=114, n=6041; for k > 200: k=210, n=26171; for k > 300: k=357, n=218084; for k > 400: k=402, n=576239.
Additionally, for k > 500: k=585, n=3569114; for k > 600: k=630, n=3802301; for k > 700: k=744, n=24307841; for k > 800: k=855, n=25051934; for k > 900: k=1008, n=54168539. Other cases k > 900: k=945, n=74380946, k=915, n=89992964, k=939, n=118991066. - Zak Seidov, May 23 2007
It is easily proved that for n > 2, a(n) >= A089128(n+1). The first inequality is a(21) = 4. - Franklin T. Adams-Watters, May 16 2018
FORMULA
a(n) = sqrt(A059843(n) - n). - Zak Seidov, Nov 24 2011
MAPLE
a:= proc(n) local d, t; d, t:= 1, n+1; while not
isprime(t) do d:= d+2; t:= t+d od; (d+1)/2
end:
seq(a(n), n=1..100); # Alois P. Heinz, Feb 04 2019
MATHEMATICA
Table[i = 1; While[! PrimeQ[i^2 + n], i++]; i, {n, 85}] (* Jayanta Basu, Apr 24 2013 *)
PROG
(PARI) a(n)=my(k); while(!isprime(k++^2+n), ); k \\ Charles R Greathouse IV, Jul 17 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jason Earls, Aug 10 2003
STATUS
approved
Difference between n^2 and average of smallest prime greater than n^2 and largest prime less than n^2.
+10
7
0, 0, 1, -1, 2, -1, 0, 0, 1, 1, 0, -1, 1, 0, 2, 1, 0, -2, 1, 0, 1, -3, 2, 0, 1, -1, 4, -5, 3, 1, -2, 0, -2, -1, 2, -1, 1, 4, 1, 0, -4, -5, -5, 3, -5, -1, 1, -4, 10, 0, 1, -2, 3, -5, 7, 9, -2, 1, 0, -2, 4, -9, 0, 1, 3, 1, -5, -10, 4, -4, 0, 1, 2, -6, 12, -4, 0, 3, -9, 3, -2, -2, 6, 1, -6, 2, -3
OFFSET
2,5
COMMENTS
Conjecture: the most frequent value will be 1 (including sequence variants with any even power n^2k). - Bill McEachen, Dec 12 2022
LINKS
FORMULA
a(n) = A000290(n) - A056928(n).
a(n) = (A056927(n) - A053000(n))/2.
EXAMPLE
a(4)=1 because smallest prime greater than 4^2 is 17, largest prime less than 4^2 is 13, average of 17 and 13 is 15 and 16-15=1.
MAPLE
with(numtheory): A056929 := n-> n^2-(prevprime(n^2)+nextprime(n^2))/2);
MATHEMATICA
Array[# - Mean@ {NextPrime[#], NextPrime[#, -1]} &[#^2] &, 87, 2] (* Michael De Vlieger, May 20 2018 *)
PROG
(PARI) a(n) = n^2 - (nextprime(n^2) + precprime(n^2))/2; \\ Michel Marcus, May 20 2018
KEYWORD
easy,sign
AUTHOR
Henry Bottomley, Jul 12 2000
EXTENSIONS
More terms from James A. Sellers, Jul 13 2000
STATUS
approved
Difference between n-th oblong (promic) number, n(n+1), and the average of the smallest prime greater than n^2 and the largest prime less than (n+1)^2.
+10
5
0, 0, 0, 0, 0, -1, -1, 0, 3, -1, -2, -1, 0, 1, 2, 1, -3, -2, 0, 1, 1, -4, 2, -2, 0, 3, -1, 0, 0, -2, -3, 0, -3, 0, 0, 0, 3, 0, 5, -4, -6, -5, -3, 0, -6, 1, -2, 6, 2, -2, 1, -2, 0, 1, 9, 0, 2, -2, -3, 2, -1, -9, 1, 1, 2, -1, -6, -6, -1, -3, 0, 0, 0, 6, -1, -3, 3, -2, -7, 1, -2, 1, 2, -1, -4
OFFSET
2,9
COMMENTS
a(1)=-0.5 which is not an integer
FORMULA
a(n) =A002378(n)-(A007491(n)+A053001(n+1))/2 =A002378(n)-A056930(n).
EXAMPLE
a(4)=0 because smallest prime greater than 4^2 is 17, largest prime less than 5^2 is 23, average of 17 and 23 is 20 and 4*5-20=0
MAPLE
with(numtheory): A056931 := n-> n*(n+1)-(prevprime((n+1)^2)+nextprime(n^2))/2);
KEYWORD
easy,sign
AUTHOR
Henry Bottomley, Jul 12 2000
EXTENSIONS
More terms from James A. Sellers, Jul 13 2000
STATUS
approved
a(n) is the smallest positive number m such that m^2 + n is the next prime > m^2.
+10
5
1, 3, 8, 5, 12, 11, 18, 51, 82, 49, 234, 23, 42, 75, 86, 231, 174, 107, 288, 63, 80, 69, 102, 325, 166, 765, 128, 143, 822, 727, 276, 597, 226, 835, 702, 461, 254, 693, 592, 797, 1284, 349, 370, 2337, 596, 645, 3012, 1033, 590, 4083, 1490, 757, 882, 833, 1668
OFFSET
1,2
COMMENTS
The primes are in A058056.
LINKS
Zak Seidov, Table of n, a(n) for n = 1..500 (first 400 terms from T. D. Noe)
FORMULA
a(n) = Min{ m > 0 | m^2 + n is the next prime after m^2}.
A053000(a(n)) = n. - Zak Seidov, Apr 12 2013
EXAMPLE
n=6: a(6)=11 and 11^2+6 is 127, a prime; n=97: a(97) = 2144 and 2144^2+97 = 4596833, the least prime of the form m^2+97.
MAPLE
for m from 1 to 10^5 do
r:= nextprime(m^2)-m^2;
if not assigned(R[r]) then R[r]:= m end if;
end do:
J:= map(op, {indices(R)}):
N:= min({$1..J[-1]} minus J)-1:
[seq(R[j], j=1..N)]; # Robert Israel, Aug 10 2012
MATHEMATICA
nn = 100; t = Table[0, {nn}]; found = 0; m = 0; While[found < nn, m++; k = NextPrime[m^2] - m^2; If[k <= nn && t[[k]] == 0, t[[k]] = m; found++]]; t (* T. D. Noe, Aug 10 2012 *)
PROG
(Sage)
R = {} # After Robert Israel's Maple script.
for m in (1..2^12) :
r = next_prime(m^2) - m^2
if r not in R : R[r] = m
L = sorted(R.keys())
for i in (1..len(L)-1) :
if L[i] != L[i-1]+1 : break
[R[k] for k in (1..i)] # Peter Luschny, Aug 11 2012
CROSSREFS
See A085099, A215249 for other versions.
KEYWORD
nonn
AUTHOR
Labos Elemer, Nov 20 2000
EXTENSIONS
Definition corrected by Zak Seidov, Mar 03 2008, and again by Franklin T. Adams-Watters, Aug 10 2012
STATUS
approved
Distance from n^2 to closest prime.
+10
5
1, 1, 2, 1, 2, 1, 2, 3, 2, 1, 6, 5, 2, 1, 2, 1, 4, 7, 2, 1, 2, 3, 6, 1, 6, 1, 2, 3, 2, 7, 6, 3, 2, 3, 2, 1, 2, 3, 2, 1, 12, 5, 2, 3, 2, 3, 2, 5, 2, 3, 8, 3, 6, 1, 2, 1, 2, 3, 10, 7, 2, 3, 2, 3, 4, 1, 4, 3, 2, 3, 2, 5, 4, 1, 2, 3, 2, 5, 6, 3, 2, 5, 6, 1, 4, 3, 4, 3, 2, 1, 6, 3, 2, 1, 4, 5, 4, 3, 2, 7, 8, 5, 2
OFFSET
1,3
LINKS
FORMULA
a(n) = abs(A000290(n) - A113425(n)) = abs(A000290(n) - A113426(n)). - Reinhard Zumkeller, Oct 31 2005
EXAMPLE
n=1: n^2=1 has next prime 2, so a(1)=1;
n=11: n^2=121 is between primes {113,127} and closer to 127, thus a(11)=6.
MAPLE
seq((s-> min(nextprime(s)-s, `if`(s>2, s-prevprime(s), [][])))(n^2), n=1..256); # edited by Alois P. Heinz, Jul 16 2017
MATHEMATICA
Table[Function[k, Min[k - #, NextPrime@ # - k] &@ If[n == 1, 0, Prime@ PrimePi@ k]][n^2], {n, 103}] (* Michael De Vlieger, Jul 15 2017 *)
Min[#-NextPrime[#, -1], NextPrime[#]-#]&/@(Range[110]^2) (* Harvey P. Dale, Jun 26 2021 *)
PROG
(PARI) a(n) = if (n==1, nextprime(n^2) - n^2, min(n^2 - precprime(n^2), nextprime(n^2) - n^2)); \\ Michel Marcus, Jul 16 2017
KEYWORD
nonn
AUTHOR
Labos Elemer, Mar 23 2001
STATUS
approved
Average of the smallest prime greater than n^2 and the largest prime less than n^2.
+10
4
4, 9, 15, 26, 34, 50, 64, 81, 99, 120, 144, 170, 195, 225, 254, 288, 324, 363, 399, 441, 483, 532, 574, 625, 675, 730, 780, 846, 897, 960, 1026, 1089, 1158, 1226, 1294, 1370, 1443, 1517, 1599, 1681, 1768, 1854, 1941, 2022, 2121, 2210, 2303, 2405, 2490
OFFSET
2,1
LINKS
FORMULA
a(n) = (A007491(n) - A053001(n))/2.
a(n) = A000290(n) + (A053000(n) - A056927(n))/2.
a(n) = A000290(n) - A056929(n).
EXAMPLE
a(4)=15 because the smallest prime greater than 4^2 is 17, the largest prime less than 4^2 is 13, and the average of 17 and 13 is 15.
MATHEMATICA
Table[n2=n^2; (NextPrime[n2, -1]+NextPrime[n2])/2, {n, 2, 100}] (* Vladimir Joseph Stephan Orlovsky, Mar 09 2011 *)
PROG
(PARI) a(n) = (nextprime(n^2) + precprime(n^2))/2; \\ Michel Marcus, May 20 2018
KEYWORD
easy,nonn
AUTHOR
Henry Bottomley, Jul 12 2000
STATUS
approved

Search completed in 0.011 seconds