[go: up one dir, main page]

login
A014085
Number of primes between n^2 and (n+1)^2.
114
0, 2, 2, 2, 3, 2, 4, 3, 4, 3, 5, 4, 5, 5, 4, 6, 7, 5, 6, 6, 7, 7, 7, 6, 9, 8, 7, 8, 9, 8, 8, 10, 9, 10, 9, 10, 9, 9, 12, 11, 12, 11, 9, 12, 11, 13, 10, 13, 15, 10, 11, 15, 16, 12, 13, 11, 12, 17, 13, 16, 16, 13, 17, 15, 14, 16, 15, 15, 17, 13, 21, 15, 15, 17, 17, 18, 22, 14, 18, 23, 13
OFFSET
0,2
COMMENTS
Suggested by Legendre's conjecture (still open) that for n > 0 there is always a prime between n^2 and (n+1)^2.
a(n) is the number of occurrences of n in A000006. - Philippe Deléham, Dec 17 2003
See the additional references and links mentioned in A143227. - Jonathan Sondow, Aug 03 2008
Legendre's conjecture may be written pi((n+1)^2) - pi(n^2) > 0 for all positive n, where pi(n) = A000720(n), [the prime counting function]. - Jonathan Vos Post, Jul 30 2008 [Comment corrected by Jonathan Sondow, Aug 15 2008]
Legendre's conjecture can be generalized as follows: for all integers n > 0 and all real numbers k > K, there is a prime in the range n^k to (n+1)^k. The constant K is conjectured to be log(127)/log(16). See A143935. - T. D. Noe, Sep 05 2008
For n > 0: number of occurrences of n^2 in A145445. - Reinhard Zumkeller, Jul 25 2014
REFERENCES
J. R. Goldman, The Queen of Mathematics, 1998, p. 82.
LINKS
Pierre Dusart, The k-th prime is greater than k(ln k + ln ln k-1) for k>=2, Mathematics of Computation 68: (1999), 411-415.
Tsutomu Hashimoto, On a certain relation between Legendre's conjecture and Bertrand's postulate, arXiv:0807.3690 [math.GM], 2008.
M. Hassani, Counting primes in the interval (n^2, (n+1)^2), arXiv:math/0607096 [math.NT], 2006.
Edmund Landau, Gelöste und ungelöste Probleme aus der Theorie der Primzahlverteilung und der Riemannschen Zetafunktion. Jahresbericht der Deutschen Mathematiker-Vereinigung (1912), Vol. 21, page 208-228.
Michael Penn, Legendre's Conjecture is probably true, and here's why, YouTube video, 2023.
Eric Weisstein's World of Mathematics, Legendre's Conjecture
FORMULA
a(n) = A000720((n+1)^2) - A000720(n^2). - Jonathan Vos Post, Jul 30 2008
a(n) = Sum_{k = n^2..(n+1)^2} A010051(k). - Reinhard Zumkeller, Mar 18 2012
Conjecture: for all n>1, abs(a(n)-(n/log(n))) < sqrt(n). - Alain Rocchelli, Sep 20 2023
EXAMPLE
a(17) = 5 because between 17^2 and 18^2, i.e., 289 and 324, there are 5 primes (which are 293, 307, 311, 313, 317).
MATHEMATICA
Table[PrimePi[(n + 1)^2] - PrimePi[n^2], {n, 0, 80}] (* Lei Zhou, Dec 01 2005 *)
Differences[PrimePi[Range[0, 90]^2]] (* Harvey P. Dale, Nov 25 2015 *)
PROG
(PARI) a(n)=primepi((n+1)^2)-primepi(n^2) \\ Charles R Greathouse IV, Jun 15 2011
(Haskell)
a014085 n = sum $ map a010051 [n^2..(n+1)^2]
-- Reinhard Zumkeller, Mar 18 2012
(Python)
from sympy import primepi
def a(n): return primepi((n+1)**2) - primepi(n**2)
print([a(n) for n in range(81)]) # Michael S. Branicky, Jul 05 2021
CROSSREFS
First differences of A038107.
Counts of primes between consecutive higher powers: A060199, A061235, A062517.
Sequence in context: A352631 A134446 A125749 * A248891 A171239 A029210
KEYWORD
nonn,nice
AUTHOR
Jon Wild, Jul 14 1997
STATUS
approved