[go: up one dir, main page]

login
A053002
Continued fraction for 1 / M(1,sqrt(2)) (Gauss's constant).
4
0, 1, 5, 21, 3, 4, 14, 1, 1, 1, 1, 1, 3, 1, 15, 1, 3, 8, 36, 1, 2, 5, 2, 1, 1, 2, 2, 6, 9, 1, 1, 1, 3, 1, 2, 6, 1, 5, 1, 1, 2, 1, 13, 2, 2, 5, 1, 2, 2, 1, 5, 1, 3, 1, 3, 1, 2, 2, 2, 2, 8, 3, 1, 2, 2, 1, 10, 2, 2, 2, 3, 3, 1, 7, 1, 8, 3, 1, 1, 1, 1, 1, 1, 1, 1, 5, 2, 1, 2, 17, 1, 4, 31, 2, 2, 5, 30, 1, 8, 2
OFFSET
0,3
COMMENTS
On May 30, 1799, Gauss discovered that this number is also equal to (2/Pi)*Integral_{t=0..1}(1/sqrt(1-t^4)).
M(a,b) is the limit of the arithmetic-geometric mean iteration applied repeatedly starting with a and b: a_0=a, b_0=b, a_{n+1}=(a_n+b_n)/2, b_{n+1}=sqrt(a_n*b_n).
REFERENCES
J. M. Borwein and P. B. Borwein, Pi and the AGM, page 5.
J. R. Goldman, The Queen of Mathematics, 1998, p. 92.
LINKS
EXAMPLE
0.83462684167407318628142973...
MATHEMATICA
ContinuedFraction[1/ArithmeticGeometricMean[1, Sqrt[2]] , 100] (* Jean-François Alcover, Apr 18 2011 *)
PROG
(PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(1/agm(1, sqrt(2))); for (n=1, 20000, write("b053002.txt", n-1, " ", x[n])); } \\ Harry J. Smith, Apr 20 2009
CROSSREFS
Cf. A014549 (decimal expansion).
Sequence in context: A156148 A224867 A156824 * A053003 A373163 A346035
KEYWORD
nonn,cofr,nice,easy
AUTHOR
N. J. A. Sloane, Feb 21 2000
EXTENSIONS
More terms from James A. Sellers, Feb 22 2000
Offset changed by Andrew Howroyd, Aug 03 2024
STATUS
approved