[go: up one dir, main page]

login
A036888
Number of partitions of 5n such that cn(0,5) < cn(1,5) = cn(4,5) <= cn(2,5) = cn(3,5).
5
0, 1, 5, 16, 43, 106, 247, 554, 1199, 2520, 5147, 10256, 19964, 38071, 71226, 130996, 237132, 423118, 744903, 1295274, 2226315, 3785452, 6371304, 10621516, 17547538, 28743111, 46701014, 75296105, 120512148, 191536534, 302392119, 474368206
OFFSET
1,3
COMMENTS
Alternatively, number of partitions of 5n such that cn(0,5) < cn(2,5) = cn(3,5) <= cn(1,5) = cn(4,5).
For a given partition, cn(i,n) means the number of its parts equal to i modulo n.
FORMULA
a(n) = A202088(n) + A036893(n)
a(n) = A036880(n) - A036884(n)
CROSSREFS
Sequence in context: A066634 A241794 A034358 * A053221 A137221 A137234
KEYWORD
nonn
EXTENSIONS
Terms a(10) onward from Max Alekseyev, Dec 10 2011
STATUS
approved