[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053221
Row sums of triangle A053218.
6
1, 5, 16, 43, 106, 249, 568, 1271, 2806, 6133, 13300, 28659, 61426, 131057, 278512, 589807, 1245166, 2621421, 5505004, 11534315, 24117226, 50331625, 104857576, 218103783, 452984806, 939524069, 1946157028, 4026531811, 8321499106
OFFSET
1,2
COMMENTS
Considered as a vector, the sequence = A074909 * [1, 2, 3, ...], where A074909 is the beheaded Pascal's triangle as a matrix. - Gary W. Adamson, Mar 06 2012
a(n) is the sum of the upper left n X n subarray of A052509 (viewed as an infinite square array). For example (1+1+1) + (1+2+2) + (1+3+4) = 16. - J. M. Bergot, Nov 06 2012
Number of ternary strings of length n that contain at least one 2 and at most one 0. For example, a(3) = 16 since the strings are the 6 permutations of 201, the 3 permutations of 211, the 3 permutations of 220, the 3 permutations of 221, and 222. - Enrique Navarrete, Jul 25 2021
FORMULA
a(n) = (n+2)*2^(n-1)-n-1. - Vladeta Jovovic, Feb 28 2003
G.f.: -x*(-1+x+x^2) / ( (2*x-1)^2*(x-1)^2 ). - R. J. Mathar, Sep 02 2011
a(n) = (1/2) * Sum_{k=1..n} Sum_{i=1..n} C(k,i) + C(n,k). - Wesley Ivan Hurt, Sep 22 2017
E.g.f.: exp(x)*(exp(x)-1)*(1+x). - Enrique Navarrete, Jul 25 2021
a(n+1) = 2*a(n) + A006127(n). - Ya-Ping Lu, Jan 01 2024
EXAMPLE
a(4) = 4 + 7 + 12 + 20 = 43.
MAPLE
A053221 := proc(n) (n+2)*2^(n-1)-n-1 ; end proc: # R. J. Mathar, Sep 02 2011
MATHEMATICA
Table[(n + 2)*2^(n - 1) - n - 1, {n, 29}] (* or *)
Rest@ CoefficientList[Series[-x (-1 + x + x^2)/((2 x - 1)^2*(x - 1)^2), {x, 0, 29}], x] (* Michael De Vlieger, Sep 22 2017 *)
LinearRecurrence[{6, -13, 12, -4}, {1, 5, 16, 43}, 30] (* Harvey P. Dale, Jun 28 2021 *)
PROG
(PARI) vector(50, n, (n+2)*2^(n-1)-n-1) \\ G. C. Greubel, Sep 03 2018
(Magma) [(n+2)*2^(n-1)-n-1: n in [1..50]]; // G. C. Greubel, Sep 03 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Asher Auel, Jan 01 2000
STATUS
approved