[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137221
a(n) = 5*a(n-1) - 9*a(n-2) + 8*a(n-3) - 4*a(n-4), with a(0)=0, a(1)=0, a(2)=0, a(3)=1.
4
0, 0, 0, 1, 5, 16, 43, 107, 256, 597, 1365, 3072, 6827, 15019, 32768, 70997, 152917, 327680, 699051, 1485483, 3145728, 6640981, 13981013, 29360128, 61516459, 128625323, 268435456, 559240533, 1163220309, 2415919104, 5010795179
OFFSET
0,5
FORMULA
Binomial transform of A002264; a(n+1) - 2*a(n) = A024495.
From R. J. Mathar, Mar 17 2008: (Start)
O.g.f.: x^3/((1-x+x^2)(1-2*x)^2).
a(n) = ( -3*2^n + A001787(n+1) + 2*A010892(n) )/6. (End)
a(n) = (1/3)*(2^(n-1)*(n-2) + ChebyshevU(n, 1/2)). - G. C. Greubel, Jan 05 2022
MATHEMATICA
Table[(1/3)*(2^(n-1)*(n-2) + ChebyshevU[n, 1/2]), {n, 0, 40}] (* G. C. Greubel, Jan 05 2022 *)
LinearRecurrence[{5, -9, 8, -4}, {0, 0, 0, 1}, 40] (* Harvey P. Dale, Apr 30 2023 *)
PROG
(Magma) [n le 4 select Floor((n-1)/3) else 5*Self(n-1) -9*Self(n-2) +8*Self(n-3) -4*Self(n-4): n in [1..30]]; // G. C. Greubel, Jan 05 2022
(Sage) [(1/3)*(2^(n-1)*(n-2) + chebyshev_U(n, 1/2)) for n in (0..40)] # G. C. Greubel, Jan 05 2022
CROSSREFS
Same recurrence as in A100335 (essentially first differences of this sequence).
Sequence in context: A034358 A036888 A053221 * A137234 A271359 A299810
KEYWORD
nonn
AUTHOR
Paul Curtz, Mar 07 2008
EXTENSIONS
More terms from R. J. Mathar, Mar 17 2008
STATUS
approved