[go: up one dir, main page]

login
A066634
Number of triangulations of the cyclic polytope C(n, n-5).
1
5, 16, 42, 138, 357, 1233, 3278, 12589, 35789, 159613, 499900, 2677865, 9421400, 62226044
OFFSET
5,1
LINKS
C. A. Athanasiadis, J. A. De Loera, V. Reiner and F. Santos, Fiber polytopes for the projections between cyclic polytopes, European Journal of Combinatorics, Volume: 21, Issue: 1, 2000, pp. 19 - 47.
M. Azaola and F. Santos, The number of triangulations of the cyclic polytope C(n,n-4), Discrete Comput. Geom., 27 (2002), 29-48.
J. Rambau, TOPCOM.
J. Rambau, TOPCOM: Triangulations of Point Configurations and Oriented Matroids, Mathematical Software - ICMS 2002 (Cohen, Arjeh M. and Gao, Xiao-Shan and Takayama, Nobuki, eds.), World Scientific (2002), pp. 330-340.
J. Rambau and F. Santos, The Baues problem for cyclic polytopes I, In "Special issue on Combinatorics of convex polytopes" (K. Fukuda and G. M. Ziegler, eds.), European J. Combin. 21:1 (2000), 65-83.
PROG
TOPCOM's command "cyclic 17 12 | points2ntriangs -v" yields, e.g., the number of triangulations of C(17, 12).
CROSSREFS
Sequence in context: A002662 A143962 A321959 * A241794 A034358 A036888
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 09 2002
EXTENSIONS
New term for C(17,12) (computed by TOPCOM) added by Jörg Rambau, Jul 26 2011
New term for C(18,13) (computed by TOPCOM) added by Jörg Rambau, Aug 01 2011
STATUS
approved