[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A026596
Row sums of A026584.
17
1, 1, 4, 8, 23, 54, 143, 354, 914, 2306, 5907, 15012, 38368, 97804, 249865, 637834, 1629729, 4163398, 10640753, 27196246, 69526562, 177757762, 454541197, 1162403180, 2972953385, 7604223184, 19451741733, 49761433640, 127308417226
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..n} A026584(n, k).
Conjecture: n*a(n) -3*(n-1)*a(n-1) -(5*n-6)*a(n-2) +3*(5*n-13)*a(n-3) +2*(4*n-9)*a(n-4) -8*(2*n-9)*a(n-5) = 0. - R. J. Mathar, Jun 23 2013
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n+k], T[n-1, k-2] + T[n-1, k], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k] ]]]; (* T = A026584 *)
a[n_]:=a[n]= Sum[T[n, k], {k, 0, n}];
Table[a[n], {n, 0, 40}] (* G. C. Greubel, Dec 13 2021 *)
PROG
(Sage)
@CachedFunction
def T(n, k): # T = A026584
if (k==0 or k==2*n): return 1
elif (k==1 or k==2*n-1): return (n//2)
else: return T(n-1, k-2) + T(n-1, k) if ((n+k)%2==0) else T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
@CachedFunction
def A026596(n): return sum( T(n, j) for j in (0..n) )
[A026596(n) for n in (0..40)] # G. C. Greubel, Dec 13 2021
KEYWORD
nonn
STATUS
approved