Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Dec 14 2021 02:44:28
%S 1,1,4,8,23,54,143,354,914,2306,5907,15012,38368,97804,249865,637834,
%T 1629729,4163398,10640753,27196246,69526562,177757762,454541197,
%U 1162403180,2972953385,7604223184,19451741733,49761433640,127308417226
%N Row sums of A026584.
%H G. C. Greubel, <a href="/A026596/b026596.txt">Table of n, a(n) for n = 0..1000</a>
%F a(n) = Sum_{k=0..n} A026584(n, k).
%F Conjecture: n*a(n) -3*(n-1)*a(n-1) -(5*n-6)*a(n-2) +3*(5*n-13)*a(n-3) +2*(4*n-9)*a(n-4) -8*(2*n-9)*a(n-5) = 0. - _R. J. Mathar_, Jun 23 2013
%t T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n+k], T[n-1, k-2] + T[n-1, k], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k] ]]]; (* T = A026584 *)
%t a[n_]:=a[n]= Sum[T[n,k], {k,0,n}];
%t Table[a[n], {n, 0, 40}] (* _G. C. Greubel_, Dec 13 2021 *)
%o (Sage)
%o @CachedFunction
%o def T(n, k): # T = A026584
%o if (k==0 or k==2*n): return 1
%o elif (k==1 or k==2*n-1): return (n//2)
%o else: return T(n-1, k-2) + T(n-1, k) if ((n+k)%2==0) else T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
%o @CachedFunction
%o def A026596(n): return sum( T(n, j) for j in (0..n) )
%o [A026596(n) for n in (0..40)] # _G. C. Greubel_, Dec 13 2021
%Y Cf. A026584, A026585, A026587, A026589, A026590, A026591, A026592, A026593, A026594, A026595, A026597, A026598, A026599, A027282, A027283, A027284, A027285, A027286.
%K nonn
%O 0,3
%A _Clark Kimberling_