[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A026591
a(n) = T(2*n, n-1), where T is given by A026584.
17
1, 2, 9, 38, 140, 701, 2534, 13294, 48369, 258430, 947694, 5114572, 18872399, 102539204, 380143356, 2075658454, 7723000261, 42330184638, 157951859953, 868376395790, 3247811317907, 17899895038348, 67075896452000, 370442993383238, 1390392820937920, 7692166179956366, 28910883325637649, 160184255555687056
OFFSET
1,2
LINKS
FORMULA
a(n) = A026584(2*n, n-1).
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n+k], T[n-1, k-2] + T[n-1, k], T[n-1, k-2] + T[n-1, k-1] + T[n-1, k] ]]]; (* T = A026584 *)
a[n_]:= a[n]= Block[{$RecursionLimit= Infinity}, T[2*n, n-1]];
Table[a[n], {n, 1, 40}] (* G. C. Greubel, Dec 13 2021 *)
PROG
(Sage)
@CachedFunction
def T(n, k): # T = A026584
if (k==0 or k==2*n): return 1
elif (k==1 or k==2*n-1): return (n//2)
else: return T(n-1, k-2) + T(n-1, k) if ((n+k)%2==0) else T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
[T(2*n, n-1) for n in (1..40)] # G. C. Greubel, Dec 13 2021
KEYWORD
nonn
EXTENSIONS
Terms a(19) onward from G. C. Greubel, Dec 13 2021
STATUS
approved