[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306483
Expansion of Product_{k>=1} 1/(1 - psi(k)*x^k), where psi() is the Dedekind psi function (A001615).
1
1, 1, 4, 8, 23, 41, 114, 200, 491, 909, 2036, 3710, 8235, 14743, 31058, 56538, 115435, 207401, 417876, 745578, 1470371, 2626489, 5086108, 9030162, 17347019, 30620651, 58060380, 102426652, 192288399, 337633825, 629845430, 1101958752, 2040109199, 3563507377, 6553539316, 11412799294
OFFSET
0,3
LINKS
FORMULA
G.f.: exp(Sum_{k>=1} Sum_{j>=1} psi(j)^k*x^(j*k)/k).
From Vaclav Kotesovec, Feb 23 2019: (Start)
a(n) ~ c * 3^(n/2), where
c = 84.0923381459819921541124348082985... if n is even and
c = 82.6952907990079575265849718772977... if n is odd. (End)
MATHEMATICA
nmax = 35; CoefficientList[Series[Product[1/(1 - DirichletConvolve[i, MoebiusMu[i]^2, i, k] x^k), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 35; CoefficientList[Series[Exp[Sum[Sum[DirichletConvolve[i, MoebiusMu[i]^2, i, j]^k x^(j k)/k, {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d DirichletConvolve[i, MoebiusMu[i]^2, i, d]^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 35}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 18 2019
STATUS
approved