Holmium
Holmium ist ein chemisches Element mit dem Elementsymbol Ho und der Ordnungszahl 67. Im Periodensystem steht es in der Gruppe der Lanthanoide und zählt damit auch zu den Metallen der Seltenen Erden. Holmium ist ein graues, weiches und duktiles Metall, welches relativ korrosionsbeständig ist. Holmium wurde bereits 1878 entdeckt, reines Holmium wurde jedoch erst 1940 isoliert. Es findet sich in den Mineralen Gadolinit und Monazit. Holmium ist nur wenig toxisch, eine biologische Funktion ist jedoch nicht bekannt. Es gibt nur wenige Verwendungen von Holmium.
Eigenschaften | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Allgemein | ||||||||||||||||||||||||||||||||||||||||
Name, Symbol, Ordnungszahl | Holmium, Ho, 67 | |||||||||||||||||||||||||||||||||||||||
Elementkategorie | Lanthanoide | |||||||||||||||||||||||||||||||||||||||
Gruppe, Periode, Block | La, 6, f | |||||||||||||||||||||||||||||||||||||||
Aussehen | silbrig weiß | |||||||||||||||||||||||||||||||||||||||
CAS-Nummer | ||||||||||||||||||||||||||||||||||||||||
EG-Nummer | 231-169-0 | |||||||||||||||||||||||||||||||||||||||
ECHA-InfoCard | 100.028.335 | |||||||||||||||||||||||||||||||||||||||
Massenanteil an der Erdhülle | 1,1 ppm (57. Rang)[1] | |||||||||||||||||||||||||||||||||||||||
Atomar[2] | ||||||||||||||||||||||||||||||||||||||||
Atommasse | 164,930328(7)[3] u | |||||||||||||||||||||||||||||||||||||||
Atomradius (berechnet) | 175 (226) pm | |||||||||||||||||||||||||||||||||||||||
Kovalenter Radius | 192 pm | |||||||||||||||||||||||||||||||||||||||
Elektronenkonfiguration | [Xe] 4f11 6s2 | |||||||||||||||||||||||||||||||||||||||
1. Ionisierungsenergie | 6.0215(6) eV[4] ≈ 580.99 kJ/mol[5] | |||||||||||||||||||||||||||||||||||||||
2. Ionisierungsenergie | 11.781(20) eV[4] ≈ 1136.7 kJ/mol[5] | |||||||||||||||||||||||||||||||||||||||
3. Ionisierungsenergie | 22.79(3) eV[4] ≈ 2200 kJ/mol[5] | |||||||||||||||||||||||||||||||||||||||
4. Ionisierungsenergie | 42.52(8) eV[4] ≈ 4100 kJ/mol[5] | |||||||||||||||||||||||||||||||||||||||
5. Ionisierungsenergie | 63.9(3) eV[4] ≈ 6170 kJ/mol[5] | |||||||||||||||||||||||||||||||||||||||
Physikalisch[2] | ||||||||||||||||||||||||||||||||||||||||
Aggregatzustand | fest | |||||||||||||||||||||||||||||||||||||||
Kristallstruktur | hexagonal | |||||||||||||||||||||||||||||||||||||||
Dichte | 8,78 g/cm3 (25 °C)[6] | |||||||||||||||||||||||||||||||||||||||
Magnetismus | paramagnetisch (χm = 0,049)[7] | |||||||||||||||||||||||||||||||||||||||
Schmelzpunkt | 1734 K (1461 °C) | |||||||||||||||||||||||||||||||||||||||
Siedepunkt | 2873 K[8] (2600 °C) | |||||||||||||||||||||||||||||||||||||||
Molares Volumen | 18,74 · 10−6 m3·mol−1 | |||||||||||||||||||||||||||||||||||||||
Verdampfungsenthalpie | 251 kJ/mol[8] | |||||||||||||||||||||||||||||||||||||||
Schmelzenthalpie | 17 kJ·mol−1 | |||||||||||||||||||||||||||||||||||||||
Schallgeschwindigkeit | 2760 m·s−1 | |||||||||||||||||||||||||||||||||||||||
Elektrische Leitfähigkeit | 1,23 · 106 S·m−1 | |||||||||||||||||||||||||||||||||||||||
Wärmeleitfähigkeit | 16 W·m−1·K−1 | |||||||||||||||||||||||||||||||||||||||
Chemisch[2] | ||||||||||||||||||||||||||||||||||||||||
Oxidationszustände | (+2), +3 | |||||||||||||||||||||||||||||||||||||||
Normalpotential | −2,33 V (Ho3+ + 3 e− → Ho) | |||||||||||||||||||||||||||||||||||||||
Elektronegativität | 1,23 (Pauling-Skala) | |||||||||||||||||||||||||||||||||||||||
Isotope | ||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||
Weitere Isotope siehe Liste der Isotope | ||||||||||||||||||||||||||||||||||||||||
Sicherheitshinweise | ||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen. |
Geschichte
Bearbeiten1878 entdeckten die Schweizer Chemiker Marc Delafontaine und Jacques-Louis Soret das Element spektroskopisch durch seine abweichenden Absorptionslinien. Das neue Element nannten sie ›X‹. 1879 entdeckte der schwedische Chemiker Per Teodor Cleve das neue Element unabhängig von den beiden Schweizern und isolierte es als gelbes Oxid aus unreinem Erbium (Erbiumoxid). Cleve wendete eine von Carl Gustav Mosander entwickelte Methode an; er trennte zunächst alle bekannten Verunreinigungen ab, bevor er versuchte, den Rest zu trennen. Er erhielt einen braunen Rest, den er Holmia nannte, sowie einen grünen Rest, der den Namen Thulia erhielt.
Erst 1911 gelang dem schwedischen Chemiker Holmberg die Gewinnung von reinem Holmiumoxid. Ob er die Bezeichnung Holmium, vorgeschlagen von Cleve für die schwedische Landeshauptstadt Stockholm, übernahm oder als Ableitung seines eigenen Namens betrachtete, ist nicht bekannt.
Metallisch reines Holmium wurde erstmals 1940 hergestellt.
Vorkommen
BearbeitenIn natürlichen Vorkommen tritt Holmium nur in Verbindungen auf. Bekannte holmiumhaltige Minerale sind:
Gewinnung und Darstellung
BearbeitenNach einer aufwändigen Abtrennung der anderen Holmiumbegleiter wird das Oxid mit Fluorwasserstoff zum Holmiumfluorid umgesetzt. Anschließend wird mit Calcium unter Bildung von Calciumfluorid zum metallischen Holmium reduziert. Die verbleibenden Calciumreste und Verunreinigungen werden in einer zusätzlichen Umschmelzung im Vakuum abgetrennt.
Eigenschaften
BearbeitenDas silberweiß glänzende Metall der Seltenen Erden ist weich und schmiedbar.
Holmium weist besondere magnetische Eigenschaften auf. In seinen ferromagnetischen Eigenschaften ist es dem Eisen weit überlegen. Holmium besitzt zusammen mit Dysprosium das höchste magnetische Moment (10,6 μB) aller natürlich vorkommenden chemischen Elemente.[10][11] Mit Yttrium bildet es magnetische Verbindungen.
In trockener Luft ist Holmium relativ beständig, in feuchter oder warmer Luft läuft es unter Bildung einer gelblichen Oxidschicht schnell an. Bei Temperaturen oberhalb von 150 °C verbrennt es zum Sesquioxid Ho2O3. Mit Wasser reagiert es unter Wasserstoffentwicklung zum Hydroxid. In Mineralsäuren löst es sich unter Bildung von Wasserstoff auf.
In seinen Verbindungen liegt es in der Oxidationszahl +3 vor, die Ho3+-Kationen bilden in Wasser gelbe Lösungen. Unter besonderen reduktiven Bedingungen kann bei den Chloriden auch die Oxidationszahl +2 realisiert werden, z. B. im Holmium(II,III)chlorid Ho5Cl11, allerdings existiert das reine Holmium(II)chlorid nicht.
Verwendung
BearbeitenWegen seiner hervorragenden magnetischen Eigenschaften verwendet man Polschuhe aus Holmium für Hochleistungsmagnete zur Erzeugung stärkster Magnetfelder.
Weitere Anwendungen:
- Magnetblasenspeicher unter Verwendung von Dünnschichtlegierungen aus Holmium-Eisen, Holmium-Nickel und Holmium-Cobalt.
- Steuerstäbe in Brutreaktoren.
- Dotierung von Yttrium-Eisen-Granat (YIG), Yttrium-Aluminium-Granat (YAG) und Yttrium-Lithium-Fluorid (YLF) für Festkörperlaser (Holmium-Laser mit einer Emissionswellenlänge von 2,1 µm[12]) und Mikrowellenbauteile in der Medizintechnik.
- Holmiumoxid zur Erzeugung von gelbem Glas u. a. wegen seiner scharfen Absorptionsbanden für Kalibrierfunktionen für Photometer.[13]
Physiologie
BearbeitenHolmium hat keine bekannte biologische Funktion.
Sicherheitshinweise
BearbeitenHolmium und Holmiumverbindungen sind als wenig toxisch zu betrachten. Metallstäube sind feuer- und explosionsgefährlich.
Verbindungen
Bearbeiten- Holmium(III)-oxid Ho2O3
- Holmium(III)-fluorid HoF3
- Holmium(III)-chlorid HoCl3
- Holmium(III)-bromid HoBr3
- Holmium(III)-iodid HoI3
- Holmium(III)-sulfat Ho2(SO4)3 · 8 H2O: bei Tageslicht gelbe, bei Kunstlicht (Leuchtstofflampe) rosafarbene Kristalle.
- Holmium(III)-perchlorat Ho(ClO4)3: Als Standard-Lösung zum Kalibrieren vom Spektrometern
Weblinks
Bearbeiten- Eintrag zu Holmium. In: Römpp Online. Georg Thieme Verlag, abgerufen am 3. Januar 2015.
Einzelnachweise
Bearbeiten- ↑ Harry H. Binder: Lexikon der chemischen Elemente. S. Hirzel Verlag, Stuttgart 1999, ISBN 3-7776-0736-3.
- ↑ Die Werte für die Eigenschaften (Infobox) sind, wenn nicht anders angegeben, aus www.webelements.com (Holmium) entnommen.
- ↑ IUPAC Commission on Isotopic Abundances and Atomic Weights: Standard Atomic Weights of 14 Chemical Elements Revised. In: Chemistry International. 40, 2018, S. 23, doi:10.1515/ci-2018-0409.
- ↑ a b c d e Eintrag zu holmium in Kramida, A., Ralchenko, Yu., Reader, J. und NIST ASD Team (2019): NIST Atomic Spectra Database (ver. 5.7.1). Hrsg.: NIST, Gaithersburg, MD. doi:10.18434/T4W30F (physics.nist.gov/asd). Abgerufen am 13. Juni 2020.
- ↑ a b c d e Eintrag zu holmium bei WebElements, www.webelements.com, abgerufen am 13. Juni 2020.
- ↑ N. N. Greenwood, A. Earnshaw: Chemie der Elemente. 1. Auflage. VCH, Weinheim 1988, ISBN 3-527-26169-9, S. 1579.
- ↑ Robert C. Weast (Hrsg.): CRC Handbook of Chemistry and Physics. CRC (Chemical Rubber Publishing Company), Boca Raton 1990, ISBN 0-8493-0470-9, S. E-129 bis E-145. Werte dort sind auf g/mol bezogen und in cgs-Einheiten angegeben. Der hier angegebene Wert ist der daraus berechnete maßeinheitslose SI-Wert.
- ↑ a b Yiming Zhang, Julian R. G. Evans, Shoufeng Yang: Corrected Values for Boiling Points and Enthalpies of Vaporization of Elements in Handbooks. In: Journal of Chemical & Engineering Data. 56, 2011, S. 328–337, doi:10.1021/je1011086.
- ↑ a b Eintrag zu Holmium, Pulver in der GESTIS-Stoffdatenbank des IFA, abgerufen am 26. April 2017. (JavaScript erforderlich)
- ↑ Dysprosium. www.americanelements.com, abgerufen am 27. März 2016 (englisch).
- ↑ Holmium. www.americanelements.com, abgerufen am 27. März 2016 (englisch).
- ↑ Der Einsatz von Holmium-Lasern mittlerer Leistung in der Endourologie ( vom 4. März 2016 im Internet Archive) (PDF; 46 kB).
- ↑ starna.de: Holmiumglas - UV und sichtbare Wellenlänge.