[go: up one dir, main page]

Schallgeschwindigkeit

Geschwindigkeit, mit der sich Schallwellen in einem Medium ausbreiten
Schallgrößen

Die Schallgeschwindigkeit ist die Geschwindigkeit, mit der sich Schallwellen in einem Medium ausbreiten. Ihre SI-Einheit ist Meter pro Sekunde (m/s). Zum Beispiel beträgt sie

343,2 m/s (1236 km/h)
in trockener Luft von 20 °C.

Die Schallgeschwindigkeit als Ausbreitungsgeschwindigkeit ist zu unterscheiden von

  • Der Strömungsgeschwindigkeit von Stoffen.
  • Der Schallschnelle, d. h. der Geschwindigkeit, mit der sich die einzelnen Teilchen des Mediums um die Ruheposition bewegen, um die zu der Schallwelle gehörige Deformation auf- und abzubauen.[1]

Die Schallgeschwindigkeit ist eine Eigenschaft des Ausbreitungsmediums, insbesondere dessen Widerstand gegen elastische Deformationen und dessen Dichte. Da diese Eigenschaften von Druck und Temperatur abhängig sind, ist die Schallgeschwindigkeit auch von diesen abhängig. Die Schallgeschwindigkeit steigt im Allgemeinen mit der Temperatur, in der Nähe von Phasenübergängen fällt sie aber wieder. Bei nicht zu hohen Drücken ist die Schallgeschwindigkeit kaum vom Druck abhängig, weil sich die Änderungen von Dichte und Elastizität ausgleichen. In Flüssigkeiten und Gasen kann sich nur eine Art von Druckwellen (Longitudinalwellen) ausbreiten, es gibt nur eine Schallgeschwindigkeit. In Festkörpern gibt es dagegen noch Scherwellen (Transversalwellen), die sich langsamer (meist knapp die halbe Geschwindigkeit) ausbreiten. In anisotropen Festkörpern ist die Ausbreitungsgeschwindigkeit richtungsabhängig und es kann zwei verschiedene Transversalwellen mit leicht unterschiedlichen Ausbreitungsgeschwindigkeiten geben.

Die Schallgeschwindigkeit wird im Allgemeinen für unbegrenzte Medien angegeben, in der Nähe von Grenzflächen (Rayleigh-Welle, Lamb-Welle) an Oberflächen oder bei schwingenden Flächen reduziert sich die Schallgeschwindigkeit. Die Schallgeschwindigkeit ist bei geringem Schallwechseldruck von diesem unabhängig, bei höheren Amplituden steigt die Schallgeschwindigkeit an und es kommt zu Stofftransporten (siehe Stoßwelle).

Schalltransport ist weitgehend verlustfrei und unabhängig von der Frequenz, bei höheren Frequenzen oder in der Nähe von Phasenübergängen kommt es zu erhöhten Transportverlusten und die Schallgeschwindigkeit wird frequenzabhängig.

Für den Zusammenhang zwischen Schallgeschwindigkeit und Frequenz einer monochromatischen Schallwelle der Wellenlänge gilt wie für alle solchen Wellen:

Geschichte

Bearbeiten

In Isaac Newtons "Principia" von 1687 wird die Schallgeschwindigkeit in Luft mit 298 m/s angegeben. Dieser Wert ist um etwa 15 % zu niedrig,[2] was in erster Linie auf die Vernachlässigung der, damals noch unbekannten, Auswirkung der schnell schwankenden Temperatur einer Schallwelle zurückzuführen ist. Nach aktuellem Verständnis ist die Kompression und Ausdehnung der Schallwellen in der Luft ein adiabatischer Prozess und nicht isotherm. Dieser Fehler wurde durch Pierre-Simon Laplace korrigiert.[3]

Im 17. Jahrhundert gab es mehrere Versuche, die Schallgeschwindigkeit genau zu messen, darunter Versuche von Marin Mersenne im Jahr 1630 (1.380 Pariser Fuß pro Sekunde), Pierre Gassendi im Jahr 1635 (1.473 Pariser Fuß pro Sekunde) und Robert Boyle (1.125 Pariser Fuß pro Sekunde).[4] Der Pariser Fuß entsprach 325 mm. Dies ist länger als der heute gebräuchliche „internationale Fuß“, der 1959 offiziell mit 304,8 mm definiert wurde, so dass die Schallgeschwindigkeit bei 20 °C 1.055 Pariser Fuß pro Sekunde beträgt. Im Jahr 1709 veröffentlichte William Derham eine genauere Messung der Schallgeschwindigkeit mit 1.072 Pariser Fuß pro Sekunde.[4]

William Derham beobachtete mit einem Fernrohr vom Turm der Kirche St. Laurence in Upminster aus das Aufblitzen eines entfernten Gewehrschusses und maß dann mit einem Halbsekundenpendel die Zeit bis zum Ertönen des Schusses. Die Schüsse wurden von einer Reihe örtlicher Sehenswürdigkeiten aus gemessen, darunter die Kirche von North Ockendon. Die Entfernung war durch Triangulation bekannt, so dass die Geschwindigkeit, mit der sich der Schall fortbewegt hatte, berechnet werden konnte.[5]

Schallgeschwindigkeit in Flüssigkeiten und Gasen

Bearbeiten

In Flüssigkeiten und Gasen können sich nur Druck- bzw. Dichtewellen ausbreiten, bei denen sich die einzelnen Teilchen in Richtung der Wellenausbreitung hin und her bewegen (Longitudinalwelle). Die Schallgeschwindigkeit ist eine Funktion der Dichte   und des (adiabatischen) Kompressionsmoduls   und berechnet sich so:

 

Schallgeschwindigkeit in Festkörpern

Bearbeiten

Schallwellen in Festkörpern können sich sowohl als Longitudinalwelle (hierbei ist die Schwingungsrichtung der Teilchen parallel zur Ausbreitungsrichtung) oder als Transversalwelle (Schwingungsrichtung senkrecht zur Ausbreitungsrichtung) ausbreiten.

Für Longitudinalwellen hängt im allgemeinen Fall die Schallgeschwindigkeit in Festkörpern von der Dichte  , der Poissonzahl   und dem Elastizitätsmodul   des Festkörpers ab. Dabei gilt

 
 

mit dem Schubmodul  .

Das Verhältnis der Ausbreitungsgeschwindigkeit zwischen Longitudinal- und Transversalwelle ist in isotropen Medien immer größer als 1,414 ( ) und nur abhängig von der Poissonzahl  :

    Material     Material
0 1,414 Kork 0,3333... 2
0,032 1,438 Beryllium 0,4375 3
0,2 1,633 Beton 0,44 3,05 Blei
0,33 1,895 Titan 0,47916... 4
0,35 2,082 Al, Cu, Mg   0,5   Gummi, Übergang zu Flüssigkeiten

Für eine Oberflächenwelle auf einem ausgedehnten Festkörper (Rayleigh-Welle) gilt:[6]

 

Der Ausdruck   wird auch als Longitudinalmodul bezeichnet, sodass für die Longitudinalwelle auch

 

geschrieben werden kann.

Im Spezialfall eines langen Stabes, dessen Durchmesser deutlich kleiner als die Wellenlänge der Schallwelle ist, kann der Einfluss der Querkontraktion vernachlässigt werden (d. h.  ), und man erhält:

 
 

Die höchste, in einem Festkörper mögliche Schallgeschwindigkeit beträgt

 

Dabei ist   die Lichtgeschwindigkeit,   die Feinstrukturkonstante,   die Masse eines Elektrons und   die Masse eines Protons.[7]

Schallgeschwindigkeit im idealen Gas

Bearbeiten

Klassisches ideales Gas

Bearbeiten

Da der Kompressionsmodul eines klassischen idealen Gases   nur vom Adiabatenexponenten   („kappa“) des Gases und dem herrschenden Druck   abhängt, ergibt sich für die Schallgeschwindigkeit:

 

Hier ist   die universelle Gaskonstante,   die molare Masse (Masse/Stoffmenge) des Gases,   die Boltzmann-Konstante,   die (durchschnittliche) Masse eines Teilchens und   die absolute Temperatur. Für feste Werte   und  , also für ein gegebenes ideales Gas, hängt die Schallgeschwindigkeit nur von der Temperatur ab. Sie ist insbesondere weder vom Druck noch von der Dichte des Gases abhängig. Der Adiabatenexponent berechnet sich näherungsweise aus  , wobei   die Anzahl der Freiheitsgrade der Bewegung eines Teilchens (Atom oder Molekül) ist. Für einen Massenpunkt gilt  , für eine starre Hantel mit zwei Massenpunkten (Molekül mit zwei Atomen)  , für einen starren Körper mit mehr als zwei Massenpunkten (stark gewinkeltes Molekül)  , für nicht starre Körper mit mehr als zwei Massenpunkten (Molekül mit einer fehlenden starren Verbindung)  . Für komplexe Moleküle erhöht sich der Freiheitsgrad um jede fehlende starre Verbindung  . Ohne Berücksichtigung der Vibration aller mehratomigen Moleküle im höheren Temperaturbereich kann der Adiabatenexponent also nur folgende Werte annehmen:

  •   für einatomige Gase (z. B. alle Edelgase)
  •   für zweiatomige Gase (z. B. Stickstoff N2, Wasserstoff H2, Sauerstoff O2, Kohlenmonoxid CO)
  •   für starre Moleküle mit mehr als zwei Atomen (z. B. Wasserdampf H2O, Schwefelwasserstoff H2S, Methan CH4)
  •   für Moleküle mit einer fehlenden starren Verbindung (z. B. Stickoxide NO2 und N2O, Kohlendioxid CO2, Schwefeldioxid SO2, Ammoniak NH3)
  •   für größere Moleküle mit fehlenden starren Verbindungen (z. B. Ethan C2H6, Ethen C2H4, Methanol CH3OH)

Für trockene Luft (mittlere Molmasse  , Normaltemperatur  ,  ) erhält man

 ,

in guter Übereinstimmung mit dem in trockener Luft gemessenen Wert.

Die Schallgeschwindigkeit   ist etwas kleiner als die mittlere Translationsgeschwindigkeit   der im Gas sich bewegenden Teilchen. Das steht im Einklang mit der anschaulichen Interpretation der Schallausbreitung in der kinetischen Gastheorie: Eine kleine lokale Abweichung des Druckes und der Dichte von ihren Durchschnittswerten wird von den durcheinanderfliegenden Teilchen in die Umgebung getragen.

Der Faktor   kommt aus der adiabatischen Zustandsgleichung, die Prozesse beschreibt, bei denen die Temperatur nicht konstant bleibt, obwohl keine Wärme ausgetauscht wird. Schallwellen bestehen aus periodischen Schwankungen von Dichte und Druck, die so rasch ablaufen, dass währenddessen Wärme nennenswert weder zu- noch abfließen kann. Wegen der damit verbundenen Temperaturschwankungen gilt die obige Formel für   nur im Grenzfall kleiner Amplituden, wobei für   die Durchschnittstemperatur einzusetzen ist. Tatsächlich machen sich bei großen Amplituden, z. B. nach einer Detonation, nichtlineare Effekte dadurch bemerkbar, dass die Wellenberge – Wellenfronten mit maximaler Dichte – schneller laufen als die Wellentäler, was zu steileren Wellenformen und zur Ausbildung von Stoßwellen führt.

Quanteneffekte

Bearbeiten

Da die Schallgeschwindigkeit einerseits mit dem Kundtschen Rohr schon früh verhältnismäßig leicht präzise zu messen war und andererseits direkt mit einer atomphysikalischen Größe, der Anzahl der Freiheitsgrade, verknüpft ist, führte sie zur frühen Entdeckung wichtiger Effekte, die erst mit der Quantenmechanik erklärt werden konnten.

Atome als Massenpunkte

Bearbeiten

Das erste mit chemischen Methoden als einatomig identifizierte Gas – Quecksilberdampf bei hoher Temperatur – zeigte 1875 auch zum ersten Mal den Wert  , also  . Dieser Wert ist nach der kinetischen Gastheorie einem Gas aus idealen Massenpunkten vorbehalten. Ab 1895 kamen gleiche Befunde an den neu entdeckten Edelgasen Argon, Neon hinzu. Das stützte einerseits die damalige Atomhypothese, nach der alle Materie aus winzigen Kügelchen aufgebaut ist, warf aber andererseits die Frage auf, warum diese Kugeln nicht wie jeder starre Körper drei weitere Freiheitsgrade für Drehbewegungen besitzen. Die Ende der 1920er Jahre gefundene quantenmechanische Erklärung besagt, dass für Drehbewegungen angeregte Energieniveaus besetzt werden müssen, deren Energie so hoch liegt, dass die kinetische Energie der stoßenden Gasteilchen bei weitem nicht ausreicht.[8]:S. 8 Das gilt auch für die Rotation eines zweiatomigen Moleküls um die Verbindungslinie der Atome und erklärt somit, warum es hier für die Rotation nicht drei, sondern nur zwei Freiheitsgrade gibt.

Einfrieren der Drehbewegung

Bearbeiten

Eine markante Temperaturabhängigkeit des Adiabatenkoeffizienten wurde 1912 bei Wasserstoff entdeckt: Bei Abkühlung von 300 K auf 100 K steigt   monoton von 1,400 auf 1,667, d. h. vom Wert für eine Hantel zum Wert für einen Massenpunkt. Man sagt, die Rotation „friert ein“, bei 100 K verhält sich das ganze Molekül wie ein Massenpunkt. Die quantenmechanische Begründung schließt an die obige Erklärung für Einzelatome an: Bei 100 K reicht die Stoßenergie der Gasmoleküle praktisch nie zur Anregung eines Energieniveaus mit höherem Drehimpuls, bei 300 K praktisch immer.[8]:S. 272 Der Effekt ist bei anderen Gasen so deutlich nicht beobachtbar, weil sie in dem jeweils betreffenden Temperaturbereich bereits verflüssigt sind. Jedoch wird auf diese Weise erklärt, warum die gemessenen Adiabatenkoeffizienten realer Gase von der einfachen Formel   meist etwas abweichen.

Schallgeschwindigkeit im realen Gas / Phänomene in der Luftatmosphäre

Bearbeiten

Die für das ideale Gas entwickelten Vorstellungen und Formeln gelten in sehr guter Näherung auch für die meisten realen Gase. Insbesondere variiert deren Adiabatenexponent   über weite Bereiche weder mit der Temperatur noch mit dem Druck. Für die Temperaturabhängigkeit der Schallgeschwindigkeit in Luft im Bereich normaler Umwelttemperaturen wird oft die lineare Näherungsformel

 

benutzt. Diese Näherung gilt im Temperaturbereich −20 °C <   < +40 °C mit einer Abweichung von weniger als 0,2 %. Die absolute Temperatur wurde hier nach   in °C umgerechnet.

Neben der Temperaturabhängigkeit der Schallgeschwindigkeit in Luft ist der Einfluss der Luftfeuchtigkeit zu berücksichtigen. Diese lässt die Schallgeschwindigkeit geringfügig zunehmen, denn die mittlere molare Masse   feuchter Luft nimmt durch die Beimischung der leichteren Wassermoleküle stärker ab als der mittlere Adiabatenkoeffizient  . Beispielsweise ist bei 20 °C die Schallgeschwindigkeit bei 100 % Luftfeuchtigkeit um 0,375 % höher als bei 0 % Luftfeuchtigkeit. Die gleiche Erhöhung der Schallgeschwindigkeit gegenüber trockener Luft würde sich durch eine Temperaturerhöhung auf gut 22 °C ergeben.[9][10]

In der normalen Atmosphäre nimmt die Schallgeschwindigkeit daher mit der Höhe ab. Sie erreicht ein Minimum von etwa 295 m/s (1062 km/h) in der Tropopause (ca. 11 km Höhe). Andererseits nimmt die Schallgeschwindigkeit bei einer Inversionswetterlage mit der Höhe zu, da dann eine wärmere Luftschicht über einer kälteren liegt. Oft geschieht dies am Abend nach einem warmen Sonnentag, weil sich der Boden schneller abkühlt als die höheren Luftschichten. Dann schreiten die Wellen in der Höhe schneller voran als unten, sodass eine Wellenfront, die von einer bodennahen Schallquelle schräg aufwärts strebt, wieder nach unten gelenkt wird (siehe Schallausbreitung). Man sagt, die Schallstrahlen werden zum Boden hin gekrümmt. An Sommerabenden kann man das oft an der größeren Reichweite der Schallausbreitung bemerken.

Ähnlich lautet die Begründung dafür, dass man mit dem Wind besser hört als gegen den Wind. Obwohl die Bewegung des Mediums Luft keinen Einfluss auf die Schallausbreitung als solches haben sollte, da die Windgeschwindigkeit immer klein gegen die Schallgeschwindigkeit ist, verbessert sich die Reichweite des Schalls. Der Wind hat fast immer ein Geschwindigkeitsprofil mit nach oben zunehmender Geschwindigkeit, was, wie oben beschrieben, zur Ablenkung der Schallausbreitung führt, und zwar einer Ablenkung nach oben bei Gegenwind und nach unten bei Mitwind.

Beispiele für Schallgeschwindigkeiten in verschiedenen Medien

Bearbeiten

In den folgenden Tabellen sind einige Beispiele für Schallgeschwindigkeiten in verschiedenen Medien aufgelistet. Angegeben ist für alle Materialien die Schallgeschwindigkeit für die Druckwelle (Longitudinal-Welle), in Festkörpern breiten sich auch Scherwellen (Transversal-Wellen) aus.

In Gasen

Bearbeiten
Gas longitudinal
(m/s)[11][12]
Luft 343
Helium 981
Wasserstoff 1280
Sauerstoff (bei 0 °C) 316
Kohlendioxid 266
Argon 319
Krypton 221
Wasserdampf (bei 100 °C) 477
Schwefelhexafluorid (bei 0 °C) 129

Soweit nicht anders vermerkt, gelten die Werte für Standardbedingungen (Temperatur von 20 °C, Druck von einer physikalischen Atmosphäre).

In Flüssigkeiten

Bearbeiten

Die meisten Flüssigkeiten haben ähnliche Schallgeschwindigkeiten von ca. 1400 m/s, die sich in der Nähe des Siedepunktes reduzieren.

Medium longitudinal
(m/s)[11][12]
Brom 0780
Diethylether 0976
Chloroform 1001
Ethylalkohol 1168
Benzol 1326
Schweres Wasser 1386
Wasser (bei 0 °C) 1407
Wasser 1484
Meerwasser ≈1500
Glycerin 1920
Quecksilber 1450

Soweit nicht anders vermerkt, gelten die Werte bei Normaldruck und einer Temperatur von 20 °C.[13]

In Festkörpern

Bearbeiten
Medium longitudinal
(m/s)[11][12]
transversal
(m/s)[11][12]
Eis (bei −4 °C) 3250[12] 1990[14]
Gummi 1500[12] 150[12]
Silikonkautschuk (RTV) ≈ 1000[15]
Plexiglas 2670[14] 1120[14]
PVC-P (weich) 80[12]
PVC-U (hart) 2250[12] 1060[12]
Beton (C20/25) 3655[12] 2240[12]
Buchenholz 3300[12]
Marmor 6150[12]
Aluminium 6250–6350[14] 3100[14]
Beryllium 12.800[14]
12.900[12]
8710[14]
8880[12]
Blei 2160[14] 700[14]
Gold 3240[14] 1200[14]
Kupfer 4660[14] 2260[14]
Magnesium 5790[14] 3100[14]
Zk60
(94 % Mg, 5 % Zn, 1 % Zr)
6250[12] 3030[16]
Stahl 5850[14]
5920[12]
3230[14]
Titan 6100[14] 3120[14]
Eisen 5170[12]
Bor 16.200[12]
Diamant 18.000[12]
Graphen 20.000[17]
theoretisches Maximum 36.100[7]1

Soweit nicht anders vermerkt, gelten die Werte für eine Temperatur von 20 °C.

Unter extremen Bedingungen

Bearbeiten
Medium longitudinal,
(m/s)
Dichte Molekülwolke[18] 1000
Erdkern (Seismische P-Wellen) 8000 ... 11.000
Interplanetares Medium auf Höhe der Erdbahn[19] 60.000
Interstellares Medium
(hängt stark von der Temperatur ab)[20][21]
200 (7 K) ... 100.000 (2 Mio. K)
Kernmaterie[22] 60.000.000

Temperaturabhängigkeit

Bearbeiten
Schallgeschwindigkeit der Luft in Abhängigkeit der Temperatur
Temperatur
  (°C)
Schallgeschwindigkeit  [23]
(m/s) (km/h) (kn)
−50 299,63 1078,7 582,4
−40 306,27 1102,6 595,4
−30 312,77 1126,0 608,2
−20 319,09 1148,7 620,2
−10 325,35 1171,3 632,4
0±0 331,50 1193,4 644,4
+10 337,54 1215,1 656,1
+20 343,46 1236,5 667,7
+30 349,29 1257,2 678,8
+40 354,94 1277,8 690,0
+50 360,57 1298,0 700,9

Die Berechnung der Geschwindigkeiten durch die Formel für ein Ideales Gas

 ,

mit der absoluten Temperatur   weicht um weniger als   von den experimentell ermittelten Werten in der Tabelle ab.

Frequenzabhängigkeit

Bearbeiten

Ist die Schallgeschwindigkeit von der Frequenz abhängig, handelt es sich um ein dispersives Medium. Jede Frequenzkomponente breitet sich jeweils mit ihrer eigenen Phasengeschwindigkeit (und Dämpfung) aus, während die Energie der Störung sich mit der Gruppengeschwindigkeit fortpflanzt. Gummi ist ein Beispiel für ein dispersives Medium: Bei höherer Frequenz ist es steifer, hat also eine höhere Schallgeschwindigkeit.

In einem nicht-dispersiven Medium ist die Schallgeschwindigkeit unabhängig von der Frequenz. Daher sind die Geschwindigkeiten des Energietransports und der Schallausbreitung dieselben. Wasser und trockene Luft sind im für Menschen hörbaren Frequenzbereich nicht-dispersive Medien. Bei hoher Luftfeuchte und im nahen Ultraschallbereich (100 kHz) ist Luft dispersiv.[24]

Schallgeschwindigkeit in Gasen bei sehr hohen Frequenzen

Bearbeiten

Bei hohen Frequenzen geht die Kompression von Gasen durch Schall durch Wärmeleitvorgänge von adiabatisch in isotherm über.[25]

Die Schallgeschwindigkeit fällt dadurch:

 

Der Übergang erfolgt im Bereich der thermischen Leitfähigkeitsfrequenz (thermal conduction frequency)  :

 .

Sie beträgt für Luft bei 20 °C und 101,325 kPa:

 .

Bei dieser Frequenz befindet man sich halbwegs zwischen adiabatischer und isothermer Kompression, was für zweiatomische Gase einen Abfall von knapp 8 % bedeutet. Das entspricht einem Abfall von knapp 90 ppm/MHz. Da die Wärmeleitung gleichzeitig ein dissipativer Prozess darstellt, reduziert sich nicht nur die Schallgeschwindigkeit, sondern die Dämpfung steigt erheblich an, so dass dieser Prozess unter Normalbedingungen kaum zu beobachten ist.

In dünnen Gasen tritt der Effekt schon bei deutlich geringeren Frequenzen auf. Da   kaum vom Druck abhängen, und  , verschiebt sich der Effekt proportional zum Druck zu niedrigeren Frequenzen.

Schallgeschwindigkeit und Thermodynamik

Bearbeiten

Die Schallgeschwindigkeit spielt eine besondere Rolle in der Thermodynamik, insbesondere bei Druckentlastungseinrichtungen, wo sie die maximal erreichbare Geschwindigkeit definiert, mit der die Druckänderung sich ausbreitet. Dadurch, dass sie mit extremer Genauigkeit gemessen werden kann, spielt sie eine große Rolle bei der Aufstellung hochgenauer Zustandsgleichungen und bei der indirekten Messung der Wärmekapazität eines idealen Gases. Die allgemeine Gleichung zur Berechnung der Schallgeschwindigkeit ist[26]

 

mit   für das spezifische Volumen oder den Kehrwert der Dichte  . Der Index s beim Differentialquotienten bedeutet „bei konstanter spezifischer Entropie“ (isentrop). Für das ideale Gas ergibt sich daraus wie oben angeführt

 

mit

 

als dem Verhältnis der isobaren und der isochoren spez. Wärmekapazitäten und R als der speziellen Gaskonstante (massebezogen). Die gebräuchlichen thermischen Zustandsgleichungen haben die Form  . Es folgt nach einigen Umformungen[26]

 

mit der realen spez. isochoren Wärmekapazität

 
 
Bild 1: Schallgeschwindigkeit von Ethy­len bei 100 °C als Funktion des Druckes
 
Bild 2: Massenstromdichte eines Gas­stroms als Funktion des Austrittsdruckes
 
Bild 3: Form einer Lavaldüse
 
Bild 4: Lavaldüsen am Triebwerksmodell der Saturn-V-Rakete in Cape Canaveral

Mit diesen Beziehungen kann man bei Kenntnis einer thermischen Zustandsgleichung den Druckeinfluss auf die Schallgeschwindigkeit berücksichtigen. Bild 1 zeigt die Abhängigkeit der Schallgeschwindigkeit vom Druck bei Ethylen für eine Temperatur von 100 °C.

Die Schallgeschwindigkeit hat besonders durch ihre leichte experimentelle Zugänglichkeit Bedeutung erlangt. Die direkt kaum messbare spezifische Wärmekapazität idealer Gase ist mit der Schallgeschwindigkeit des idealen Gases verknüpft[26]:

 

Ebenso kann die Gaskonstante mit Schallgeschwindigkeitsmessungen sehr genau ermittelt werden. Für einatomige Edelgase (He, Ne, Ar) ist  , unabhängig von der Temperatur. Dann folgt[26]

 

Da   und   sehr exakt gemessen werden können, ist dies eine extrem genaue Methode, die Gaskonstante zu bestimmen. Die Schallgeschwindigkeit ist maßgeblich bei der Druckentlastung von Gasen über ein Ventil oder eine Blende. Abhängig vom Zustand in dem zu entlastenden Behälter gibt es eine maximale Massenstromdichte (choked flow) im engsten Querschnitt des Ventils, die nicht überschritten werden kann, auch wenn der Druck jenseits des Ventils noch weiter abgesenkt wird (Bild 2). Im engsten Querschnitt stellt sich dann die Schallgeschwindigkeit des Gases ein. Bei idealen Gasen ist dies näherungsweise dann der Fall, wenn der Austrittsdruck kleiner ist als die Hälfte des Behälterdrucks. Die max. Massenstromdichte gilt auch dann, wenn ein Gas durch ein Rohr mit konstantem Querschnitt strömt. Die Schallgeschwindigkeit kann dann nicht überschritten werden, was ebenfalls von erheblicher sicherheitstechnischer Bedeutung für die Auslegung von Druckentlastungseinrichtungen ist. Für eine Beschleunigung eines Gases über die Schallgeschwindigkeit hinaus benötigt man speziell geformte Strömungskanäle, die sich nach einem engsten Querschnitt definiert erweitern, sog. Lavaldüsen (Bild 3). Ein Beispiel dafür sind die Austrittsdüsen von Raketentriebwerken (Bild 4).

Sonstiges

Bearbeiten

In der Luftfahrt wird die Geschwindigkeit eines Flugzeugs auch relativ zur Schallgeschwindigkeit gemessen. Dabei wird die Einheit Mach (benannt nach Ernst Mach) verwendet, wobei Mach 1 gleich der jeweiligen Schallgeschwindigkeit ist. Abweichend von anderen Maßeinheiten wird bei der Messung der Geschwindigkeit in Mach die Einheit vor die Zahl gesetzt.

Mach-Zahl

Die Entfernung eines Blitzes und damit eines Gewitters lässt sich durch Zählen der Sekunden zwischen dem Aufleuchten des Blitzes und dem Donnern abschätzen. Der Schall legt in der Luft einen Kilometer in etwa drei Sekunden zurück, der Lichtblitz dagegen in vernachlässigbar kurzen drei Mikrosekunden. Teilt man die Anzahl der gezählten Sekunden durch drei, ergibt sich daher in etwa die Entfernung des Blitzes in Kilometern.

Siehe auch

Bearbeiten
Bearbeiten
Wiktionary: Schallgeschwindigkeit – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

Bearbeiten
  1. Gibt es als Effektivgröße   oder  , Spitzengröße   oder   wie als Momentangröße   oder  
  2. The Speed of Sound, englisch
  3. The Newton–Laplace Equation and Speed of Sound, englisch
  4. a b Paul Murdin, Full Meridian of Glory: Perilous Adventures in the Competition to Measure the Earth, (2008) Springer Science & Business Media. Seiten: 35–36, ISBN 9780387755342
  5. Tony Fox, Essex Journal (2003) Essex Arch & Hist Soc, Seiten: 12–16
  6. Die Oberflächenwellengeschwindigkeit ist von der Poissonzahl   abhängig. Für   gilt ein Faktor von 0,8741 (z. B. Kork) statt der angegebenen 0,92, für   gilt 0,9194 (z. B. Eisen) und für   gilt 0,9554 (z. B. Gummi). Siehe dazu Arnold Schoch: Schallreflexion, Schallbrechung und Schallbeugung. In: Ergebnisse der exakten Naturwissenschaften. Band 23, 1950, S. 127–234.
  7. a b Speed of sound from fundamental physical constants, K. Trachenko, B. Monserrat, C. J. Pickard, V. V. Brazhkin, Science Advances vol. 6, (2020) doi:10.1126/sciadv.abc8662
  8. a b Jörn Bleck-Neuhaus: Elementare Teilchen. Moderne Physik von den Atomen bis zum Standard-Modell. Springer-Verlag (Heidelberg), 2010, ISBN 978-3-540-85299-5, doi:10.1007/978-3-540-85300-8.
  9. Owen Cramer: The variation of the specific heat ratio and the speed of sound in air with temperature, pressure, humidity, and CO2 concentration. In: The Journal of the Acoustical Society of America. Bd. 93(5), S. 2510, 1993.
  10. Dennis A. Bohn: Environmental Effects on the Speed of Sound. In: Journal of the Audio Engineering Society. 36(4), April 1988. PDF-Version. (Memento vom 13. Oktober 2004 im Internet Archive)
  11. a b c d A. J. Zuckerwar: Handbook of the Speed of Sound in Real Gases. Academic Press 2002.
  12. a b c d David R. Lide (Hrsg.): CRC Handbook of Chemistry and Physics. 57. Auflage. CRC Press / Taylor and Francis, Boca Raton FL, S. E-47.
  13. Schallgeschwindigkeit in Flüssigkeiten, auf karldeutsch.de
  14. a b c d e f g h i j k l m n o p q r s Joseph L. Rose: Ultrasonic Waves in Solid Media. Cambridge University Press, 2004, ISBN 978-0-521-54889-2 (eingeschränkte Vorschau in der Google-Buchsuche).
  15. Y. Yamashita, Y. Hosono, K. Itsumi: Low-Attenuation Acoustic Silicone Lens for Medical Ultrasonic Array Probes. S. 169 und 175. In: Ahmad Safari, E. Koray Akdogan (Hrsg.): Piezoelectric and Acoustic Materials for Transducer Applications. Springer-Verlag, 2008, ISBN 0-387-76540-9, S. 161–178.
  16. Offensichtlich falsche Werte durch Berechnung aus G, E, ρ und ν ersetzt
  17. Vadim Adamyan, Vladimir Zavalniuk: Phonons in graphene with point defects. In: J. Phys. Condens. Matter 23 (1), 2011, S. 15402.
  18. I. S. Glass, Glass I. S: Handbook of Infrared Astronomy. Cambridge University Press, Cambridge 1999, ISBN 978-0-521-63385-7, S. 98 (books.google.de).
  19. Imke de Pater, Jack J. Lissauer: Planetary Sciences. Cambridge University Press, Cambridge 2015, ISBN 978-1-316-19569-7, S. 286 (books.google.de).
  20. J.E.Dyson, D.A.Williams: The Physics of the Interstellar Medium, Tylor & Francis, New York (1997), 2. Aufl., S. 123.
  21. John Hussey: Bang to Eternity and Betwixt: Cosmos. John Hussey, 2014 (books.google.de).
  22. Walter Greiner, Horst Stöcker, André Gallmann: Hot and Dense Nuclear Matter, Proceedings of a NATO Advanced Study, ISBN 0-306-44885-8, 1994 Plenum Press, New York S. 182.
  23. Quelle unbekannt, siehe auch David R. Lide (Hrsg.): CRC Handbook of Chemistry and Physics. 57. Auflage. CRC Press / Taylor and Francis, Boca Raton FL, S. E-54.
  24. Dispersion relation for air via Kramers-Kronig analysis. In: The Journal of the Acoustical Society of America. Band 124, Nr. 2, 18. Juli 2008, ISSN 0001-4966, S. EL57–EL61, doi:10.1121/1.2947631.
  25. Allan D. Pierce: Acoustics: An Introduction to Its Physical Principles and Applications: Kapitel 1.10
  26. a b c d Jürgen Gmehling, Bärbel Kolbe, Michael Kleiber, Jürgen Rarey: Chemical Thermodynamics for Process Simulation. Wiley-VCH, Weinheim 2012, ISBN 978-3-527-31277-1.