dbo:abstract
|
- Στα μαθηματικά, μια επιφάνεια είναι μια γενίκευση ενός επιπέδου, του οποίου όμως η δεν είναι απαραιτήτως μηδέν. Αυτό είναι ανάλογο με το να δούμε μια καμπύλη ως γενίκευση μιας ευθείας γραμμής. Υπάρχουν διάφοροι ακριβέστεροι ορισμοί, ανάλογα με το πλαίσιο της μελέτης και τα μαθηματικά εργαλεία που χρησιμοποιούνται. Η μαθηματική έννοια της επιφάνειας είναι μια εξιδανίκευση του τι σημαίνει επιφάνεια στην κοινή γλώσσα, την επιστήμη και τα γραφικά του υπολογιστή. (el)
- En matemáticas, una superficie es un modelo matemático del concepto común de superficie. Es una generalización de un plano, pero, a diferencia de un plano, puede ser curvo; esto es análogo a una curva que generaliza una línea recta. Existen varias definiciones más precisas, dependiendo del contexto y de las herramientas matemáticas que se utilicen para su estudio. Las superficies matemáticas más simples son los planos y las esferas en el espacio euclídeo. La definición exacta de una superficie puede depender del contexto. Típicamente, en geometría algebraica, una superficie puede cruzarse a sí misma (y puede tener otros ), mientras que, en topología y geometría diferencial, puede no hacerlo. Una superficie es un espacio topológico de dimensión dos; esto significa que un punto móvil en una superficie puede moverse en dos direcciones (tiene dos grados de libertad). En otras palabras, alrededor de casi todos los puntos hay una en la que se define un sistema de coordenadas bidimensional. Por ejemplo, la superficie de la Tierra se asemeja (idealmente) a una esfera bidimensional, y la latitud y la longitud proporcionan coordenadas bidimensionales en ella (excepto en los polos y a lo largo del meridiano 180). (es)
- In mathematics, a surface is a mathematical model of the common concept of a surface. It is a generalization of a plane, but, unlike a plane, it may be curved; this is analogous to a curve generalizing a straight line. There are several more precise definitions, depending on the context and the mathematical tools that are used for the study. The simplest mathematical surfaces are planes and spheres in the Euclidean 3-space. The exact definition of a surface may depend on the context. Typically, in algebraic geometry, a surface may cross itself (and may have other singularities), while, in topology and differential geometry, it may not. A surface is a topological space of dimension two; this means that a moving point on a surface may move in two directions (it has two degrees of freedom). In other words, around almost every point, there is a coordinate patch on which a two-dimensional coordinate system is defined. For example, the surface of the Earth resembles (ideally) a two-dimensional sphere, and latitude and longitude provide two-dimensional coordinates on it (except at the poles and along the 180th meridian). (en)
- En géométrie analytique, on représente les surfaces, c'est-à-dire les ensembles de points sur lequel il est localement possible de se repérer à l'aide de deux coordonnées réelles, par des relations entre les coordonnées de leurs points, qu'on appelle équations de la surfaceou par des représentations paramétriques. Cet article étudie les propriétés des surfaces que cette approche (appelée souvent extrinsèque) permet de décrire. Pour des résultats plus approfondis, voir Géométrie différentielle des surfaces. (fr)
- 数学における曲面(きょくめん、英: surface)は、平面の概念を平坦ではない(つまり曲率が必ずしも零でない)ものへ一般化するものである。これは直線に対する曲線の二次元的な対応物である。精確な定義は、それぞれの文脈および研究に用いる数学的な道具によって異なる複数のものが存在する。 数学的概念としての曲面は、日常語としての、あるいは科学やコンピュータグラフィックが扱うような、曲面(または表面形状)の概念を理想化したものと理解することができるものである。本項では様々な種類の曲面を考慮したり比較したりすることがあるので、その場合にはそれらを区別できる曖昧さのない用語法を用いる必要がある。たとえば、「位相曲面」は二次元の(位相)多様体としての曲面の意味であり(曲面の項で扱う)、「(可)微分曲面」は可微分多様体となっている場合に用いる(の項を参照)。任意の微分曲面は位相曲面であるが、逆は言えない。 簡単のため、特に断りが無ければ「曲面」は三次元ユークリッド空間(特に、R3内の曲面の意味で用いることにする。他の空間に含まれることを仮定しない曲面は抽象曲面 (abstract surface) と呼ぶ。 (ja)
|
rdfs:comment
|
- Στα μαθηματικά, μια επιφάνεια είναι μια γενίκευση ενός επιπέδου, του οποίου όμως η δεν είναι απαραιτήτως μηδέν. Αυτό είναι ανάλογο με το να δούμε μια καμπύλη ως γενίκευση μιας ευθείας γραμμής. Υπάρχουν διάφοροι ακριβέστεροι ορισμοί, ανάλογα με το πλαίσιο της μελέτης και τα μαθηματικά εργαλεία που χρησιμοποιούνται. Η μαθηματική έννοια της επιφάνειας είναι μια εξιδανίκευση του τι σημαίνει επιφάνεια στην κοινή γλώσσα, την επιστήμη και τα γραφικά του υπολογιστή. (el)
- En géométrie analytique, on représente les surfaces, c'est-à-dire les ensembles de points sur lequel il est localement possible de se repérer à l'aide de deux coordonnées réelles, par des relations entre les coordonnées de leurs points, qu'on appelle équations de la surfaceou par des représentations paramétriques. Cet article étudie les propriétés des surfaces que cette approche (appelée souvent extrinsèque) permet de décrire. Pour des résultats plus approfondis, voir Géométrie différentielle des surfaces. (fr)
- 数学における曲面(きょくめん、英: surface)は、平面の概念を平坦ではない(つまり曲率が必ずしも零でない)ものへ一般化するものである。これは直線に対する曲線の二次元的な対応物である。精確な定義は、それぞれの文脈および研究に用いる数学的な道具によって異なる複数のものが存在する。 数学的概念としての曲面は、日常語としての、あるいは科学やコンピュータグラフィックが扱うような、曲面(または表面形状)の概念を理想化したものと理解することができるものである。本項では様々な種類の曲面を考慮したり比較したりすることがあるので、その場合にはそれらを区別できる曖昧さのない用語法を用いる必要がある。たとえば、「位相曲面」は二次元の(位相)多様体としての曲面の意味であり(曲面の項で扱う)、「(可)微分曲面」は可微分多様体となっている場合に用いる(の項を参照)。任意の微分曲面は位相曲面であるが、逆は言えない。 簡単のため、特に断りが無ければ「曲面」は三次元ユークリッド空間(特に、R3内の曲面の意味で用いることにする。他の空間に含まれることを仮定しない曲面は抽象曲面 (abstract surface) と呼ぶ。 (ja)
- En matemáticas, una superficie es un modelo matemático del concepto común de superficie. Es una generalización de un plano, pero, a diferencia de un plano, puede ser curvo; esto es análogo a una curva que generaliza una línea recta. (es)
- In mathematics, a surface is a mathematical model of the common concept of a surface. It is a generalization of a plane, but, unlike a plane, it may be curved; this is analogous to a curve generalizing a straight line. (en)
|