[go: up one dir, main page]

login
Search: a370813 -id:a370813
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of condensed integer partitions of n.
+10
53
1, 1, 1, 2, 3, 3, 5, 6, 9, 10, 14, 16, 23, 27, 33, 41, 51, 62, 75, 93, 111, 134, 159, 189, 226, 271, 317, 376, 445, 520, 609, 714, 832, 972, 1129, 1304, 1520, 1753, 2023, 2326, 2692, 3077, 3540, 4050, 4642, 5298, 6054, 6887, 7854, 8926, 10133, 11501, 13044
OFFSET
0,4
COMMENTS
Suppose that p is a partition of n. Let x(1), x(2), ..., x(k) be the distinct parts of p, and let m(i) be the multiplicity of x(i) in p. Let c(p) be the partition {m(1)*x(1), m(2)*x(2), ..., x(k)*m(k)} of n. Call a partition q of n a condensed partition of n if q = c(p) for some partition p of n. Then a(n) is the number of distinct condensed partitions of n. Note that c(p) = p if and only if p has distinct parts and that condensed partitions can have repeated parts.
Also the number of integer partitions of n such that it is possible to choose a different divisor of each part. For example, the partition (6,4,4,1) has choices (3,2,4,1), (3,4,2,1), (6,2,4,1), (6,4,2,1) so is counted under a(15). - Gus Wiseman, Mar 12 2024
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..100 (first 84 terms from Manfred Scheucher)
Manfred Scheucher, Python Script
EXAMPLE
a(5) = 3 gives the number of partitions of 5 that result from condensations as shown here: 5 -> 5, 41 -> 41, 32 -> 32, 311 -> 32, 221 -> 41, 2111 -> 32, 11111 -> 5.
From Gus Wiseman, Mar 12 2024: (Start)
The a(1) = 1 through a(9) = 10 condensed partitions:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(2,1) (2,2) (3,2) (3,3) (4,3) (4,4) (5,4)
(3,1) (4,1) (4,2) (5,2) (5,3) (6,3)
(5,1) (6,1) (6,2) (7,2)
(3,2,1) (3,2,2) (7,1) (8,1)
(4,2,1) (3,3,2) (4,3,2)
(4,2,2) (4,4,1)
(4,3,1) (5,2,2)
(5,2,1) (5,3,1)
(6,2,1)
(End)
MAPLE
b:= proc(n, i) option remember; `if`(n=0, {[]},
`if`(i=1, {[n]}, {seq(map(x-> `if`(j=0, x,
sort([x[], i*j])), b(n-i*j, i-1))[], j=0..n/i)}))
end:
a:= n-> nops(b(n$2)):
seq(a(n), n=0..50); # Alois P. Heinz, Jul 01 2019
MATHEMATICA
u[n_, k_] := u[n, k] = Map[Total, Split[IntegerPartitions[n][[k]]]]; t[n_] := t[n] = DeleteDuplicates[Table[Sort[u[n, k]], {k, 1, PartitionsP[n]}]]; Table[Length[t[n]], {n, 0, 30}]
Table[Length[Select[IntegerPartitions[n], Length[Select[Tuples[Divisors/@#], UnsameQ@@#&]]>0&]], {n, 0, 30}] (* Gus Wiseman, Mar 12 2024 *)
CROSSREFS
The strict case is A000009.
These partitions have ranks A368110, complement A355740.
The complement is counted by A370320.
The version for prime factors (not all divisors) is A370592, ranks A368100.
The complement for prime factors is A370593, ranks A355529.
For a unique choice we have A370595, ranks A370810.
For multiple choices we have A370803, ranks A370811.
The case without ones is A370805, complement A370804.
The version for factorizations is A370814, complement A370813.
A000005 counts divisors.
A000041 counts integer partitions.
A237685 counts partitions of depth 1, or A353837 if we include depth 0.
A355731 counts choices of a divisor of each prime index, firsts A355732.
KEYWORD
nonn
AUTHOR
Clark Kimberling, Mar 15 2014
EXTENSIONS
Typo in definition corrected by Manfred Scheucher, May 29 2015
Name edited by Gus Wiseman, Mar 13 2024
STATUS
approved
Number of factorizations of n into positive integers > 1 such that it is not possible to choose a different prime factor of each factor.
+10
41
0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 4, 0, 1, 0, 1, 0, 0, 0, 3, 1, 0, 2, 1, 0, 0, 0, 6, 0, 0, 0, 4, 0, 0, 0, 3, 0, 0, 0, 1, 1, 0, 0, 7, 1, 1, 0, 1, 0, 3, 0, 3, 0, 0, 0, 2, 0, 0, 1, 10, 0, 0, 0, 1, 0, 0, 0, 10, 0, 0, 1, 1, 0, 0, 0, 7, 4, 0, 0, 2, 0, 0
OFFSET
1,8
COMMENTS
For example, the factorization f = 2*3*6 has two ways to choose a prime factor of each factor, namely (2,3,2) and (2,3,3), but neither of these has all different elements, so f is counted under a(36).
FORMULA
a(n) + A368414(n) = A001055(n).
EXAMPLE
The a(1) = 0 through a(24) = 3 factorizations:
... 2*2 ... 2*4 3*3 .. 2*2*3 ... 2*8 . 2*3*3 . 2*2*5 ... 2*2*6
2*2*2 4*4 2*3*4
2*2*4 2*2*2*3
2*2*2*2
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Table[Length[Select[facs[n], Select[Tuples[First/@FactorInteger[#]&/@#], UnsameQ@@#&]=={}&]], {n, 100}]
CROSSREFS
For unlabeled graphs: A140637, complement A134964.
For labeled graphs: A367867, A367868, A140638, complement A133686.
For set-systems: A367903, ranks A367907, complement A367902, ranks A367906.
For non-isomorphic set-systems: A368094, A368409, complement A368095.
For non-isomorphic multiset partitions: A368097, A355529, A368411.
Complement for non-isomorphic multiset partitions: A368098, A368100.
The complement is counted by A368414.
For non-isomorphic set multipartitions: A368421, complement A368422.
For divisors instead of prime factors: A370813, complement A370814.
A001055 counts factorizations, strict A045778.
A007716 counts non-isomorphic multiset partitions, connected A007718.
A058891 counts set-systems, unlabeled A000612, connected A323818.
A283877 counts non-isomorphic set-systems, connected A300913.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 27 2023
STATUS
approved
Number of factorizations of n into positive integers > 1 such that it is possible to choose a different prime factor of each factor.
+10
37
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 1, 3, 1, 5, 1, 1, 2, 2, 2, 5, 1, 2, 2, 4, 1, 5, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 9, 1, 2, 3, 1, 2, 5, 1, 3, 2, 5, 1, 6, 1, 2, 3, 3, 2, 5, 1, 5, 1, 2, 1, 9, 2, 2, 2
OFFSET
1,6
COMMENTS
For example, the factorization f = 2*3*6 has two ways to choose a prime factor of each factor, namely (2,3,2) and (2,3,3), but neither of these has all different elements, so f is not counted under a(36).
FORMULA
a(n) = A001055(n) - A368413(n).
EXAMPLE
The a(n) factorizations for selected n:
1 6 12 24 30 60 72 120
2*3 2*6 2*12 2*15 2*30 2*36 2*60
3*4 3*8 3*10 3*20 3*24 3*40
4*6 5*6 4*15 4*18 4*30
2*3*5 5*12 6*12 5*24
6*10 8*9 6*20
2*3*10 8*15
2*5*6 10*12
3*4*5 2*3*20
2*5*12
2*6*10
3*4*10
3*5*8
4*5*6
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join @@ Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Table[Length[Select[facs[n], Select[Tuples[First/@FactorInteger[#]&/@#], UnsameQ@@#&]!={}&]], {n, 100}]
CROSSREFS
For labeled graphs: A133686, complement A367867, A367868, A140638.
For unlabeled graphs: A134964, complement A140637.
For set-systems: A367902, ranks A367906, complement A367903, ranks A367907.
For non-isomorphic set-systems: A368095, complement A368094, A368409.
Complementary non-isomorphic multiset partitions: A368097, A355529, A368411.
For non-isomorphic multiset partitions: A368098, A368100.
The complement is counted by A368413.
For non-isomorphic set multipartitions: A368422, complement A368421.
For divisors instead of prime factors: A370813, complement A370814.
A001055 counts factorizations, strict A045778.
A007716 counts non-isomorphic multiset partitions, connected A007718.
A058891 counts set-systems, unlabeled A000612, connected A323818.
A283877 counts non-isomorphic set-systems, connected A300913.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 29 2023
STATUS
approved
Number of condensed integer factorizations of n into unordered factors > 1.
+10
29
1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 4, 2, 2, 1, 6, 2, 2, 2, 4, 1, 5, 1, 5, 2, 2, 2, 8, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 10, 2, 4, 2, 4, 1, 6, 2, 6, 2, 2, 1, 11, 1, 2, 4, 7, 2, 5, 1, 4, 2, 5, 1, 14, 1, 2, 4, 4, 2, 5, 1, 10, 4, 2, 1, 11, 2
OFFSET
1,4
COMMENTS
A multiset is condensed iff it is possible to choose a different divisor of each element.
EXAMPLE
The a(36) = 7 factorizations: (2*2*9), (2*3*6), (2*18), (3*3*4), (3*12), (4*9), (6*6), (36).
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join @@ Table[Map[Prepend[#, d]&, Select[facs[n/d], Min @@ #>=d&]], {d, Rest[Divisors[n]]}]];
Table[Length[Select[facs[n], Length[Select[Tuples[Divisors /@ #], UnsameQ@@#&]]>0&]], {n, 100}]
CROSSREFS
Partitions of this type are counted by A239312, ranks A368110.
Factors instead of divisors: A368414, complement A368413, unique A370645.
Partitions not of this type are counted by A370320, ranks A355740.
Subsets of this type: A370582 and A370636, complement A370583 and A370637.
The complement is counted by A370813, partitions A370593, ranks A355529.
For a unique choice we have A370815, partitions A370595, ranks A370810.
A000005 counts divisors.
A001055 counts factorizations, strict A045778.
A355731 counts choices of a divisor of each prime index, firsts A355732.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 04 2024
STATUS
approved
Number of subsets of {1..n} such that it is possible to choose a different binary index of each element.
+10
27
1, 2, 4, 7, 14, 24, 39, 61, 122, 203, 315, 469, 676, 952, 1307, 1771, 3542, 5708, 8432, 11877, 16123, 21415, 27835, 35757, 45343, 57010, 70778, 87384, 106479, 129304, 155802, 187223, 374446, 588130, 835800, 1124981, 1456282, 1841361, 2281772, 2791896, 3367162
OFFSET
0,2
COMMENTS
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
FORMULA
a(2^n - 1) = A367902(n).
Partial sums of A370639.
EXAMPLE
The a(0) = 1 through a(4) = 14 subsets:
{} {} {} {} {}
{1} {1} {1} {1}
{2} {2} {2}
{1,2} {3} {3}
{1,2} {4}
{1,3} {1,2}
{2,3} {1,3}
{1,4}
{2,3}
{2,4}
{3,4}
{1,2,4}
{1,3,4}
{2,3,4}
MATHEMATICA
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
Table[Length[Select[Subsets[Range[n]], Select[Tuples[bpe/@#], UnsameQ@@#&]!={}&]], {n, 0, 10}]
CROSSREFS
Simple graphs of this type are counted by A133686, covering A367869.
Unlabeled graphs of this type are counted by A134964, complement A140637.
Simple graphs not of this type are counted by A367867, covering A367868.
Set systems of this type are counted by A367902, ranks A367906.
Set systems not of this type are counted by A367903, ranks A367907.
Set systems uniquely of this type are counted by A367904, ranks A367908.
Unlabeled multiset partitions of this type are A368098, complement A368097.
A version for MM-numbers of multisets is A368100, complement A355529.
Factorizations are counted by A368414/A370814, complement A368413/A370813.
For prime indices we have A370582, differences A370586.
The complement for prime indices is A370583, differences A370587.
The complement is A370637, differences A370589, without ones A370643.
The case of a unique choice is A370638, maxima A370640, differences A370641.
First differences are A370639.
The minimal case of the complement is A370642, without ones A370644.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A058891 counts set-systems, A003465 covering, A323818 connected.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 08 2024
EXTENSIONS
a(19)-a(40) from Alois P. Heinz, Mar 09 2024
STATUS
approved
Number of non-condensed integer partitions of n, or partitions where it is not possible to choose a different divisor of each part.
+10
25
0, 0, 1, 1, 2, 4, 6, 9, 13, 20, 28, 40, 54, 74, 102, 135, 180, 235, 310, 397, 516, 658, 843, 1066, 1349, 1687, 2119, 2634, 3273, 4045, 4995, 6128, 7517, 9171, 11181, 13579, 16457, 19884, 23992, 28859, 34646, 41506, 49634, 59211, 70533, 83836, 99504, 117867
OFFSET
0,5
COMMENTS
Includes all partitions containing 1.
EXAMPLE
The a(0) = 0 through a(8) = 13 partitions:
. . (11) (111) (211) (221) (222) (331) (611)
(1111) (311) (411) (511) (2222)
(2111) (2211) (2221) (3221)
(11111) (3111) (3211) (3311)
(21111) (4111) (4211)
(111111) (22111) (5111)
(31111) (22211)
(211111) (32111)
(1111111) (41111)
(221111)
(311111)
(2111111)
(11111111)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], Length[Select[Tuples[Divisors/@#], UnsameQ@@#&]]==0&]], {n, 0, 30}]
CROSSREFS
The complement is counted by A239312 (condensed partitions).
These partitions have ranks A355740.
Factorizations in the case of prime factors are A368413, complement A368414.
The complement for prime factors is A370592, ranks A368100.
The version for prime factors (not all divisors) is A370593, ranks A355529.
For a unique choice we have A370595, ranks A370810.
For multiple choices we have A370803, ranks A370811.
The case without ones is A370804, complement A370805.
The version for factorizations is A370813, complement A370814.
A000005 counts divisors.
A000041 counts integer partitions.
A027746 lists prime factors, A112798 indices, length A001222.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A355741 chooses prime factors of prime indices, variations A355744, A355745.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 02 2024
EXTENSIONS
a(31)-a(47) from Alois P. Heinz, Mar 03 2024
STATUS
approved
Positive integers with as many prime factors (A001222) as distinct divisors of prime indices (A370820).
+10
22
1, 2, 6, 9, 10, 22, 25, 28, 30, 34, 42, 45, 62, 63, 66, 75, 82, 92, 98, 99, 102, 104, 110, 118, 121, 134, 140, 147, 152, 153, 156, 166, 170, 186, 210, 218, 228, 230, 232, 234, 246, 254, 260, 275, 276, 279, 289, 308, 310, 314, 315, 330, 342, 343, 344, 348, 350
OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
All squarefree terms are even.
FORMULA
A001222(a(n)) = A370820(a(n)).
EXAMPLE
The prime indices of 1617 are {2,4,4,5}, with distinct divisors {1,2,4,5}, so 1617 is in the sequence.
The terms together with their prime indices begin:
1: {}
2: {1}
6: {1,2}
9: {2,2}
10: {1,3}
22: {1,5}
25: {3,3}
28: {1,1,4}
30: {1,2,3}
34: {1,7}
42: {1,2,4}
45: {2,2,3}
62: {1,11}
63: {2,2,4}
66: {1,2,5}
75: {2,3,3}
82: {1,13}
92: {1,1,9}
98: {1,4,4}
99: {2,2,5}
102: {1,2,7}
104: {1,1,1,6}
MATHEMATICA
Select[Range[100], PrimeOmega[#]==Length[Union @@ Divisors/@PrimePi/@First/@If[#==1, {}, FactorInteger[#]]]&]
CROSSREFS
For factors instead of divisors on the RHS we have A319899.
A version for binary indices is A367917.
For (greater than) instead of (equal) we have A370348, counted by A371171.
The RHS is A370820, for prime factors instead of divisors A303975.
Partitions of this type are counted by A371130, strict A371128.
For divisors instead of factors on LHS we have A371165, counted by A371172.
For only distinct prime factors on LHS we have A371177, counted by A371178.
Other inequalities: A371166, A371167, A371169, A371170.
A000005 counts divisors.
A001221 counts distinct prime factors.
A027746 lists prime factors, A112798 indices, length A001222.
A239312 counts divisor-choosable partitions, ranks A368110.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A370320 counts non-divisor-choosable partitions, ranks A355740.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 14 2024
STATUS
approved
Number of subsets of {1..n} such that it is not possible to choose a different binary index of each element.
+10
20
0, 0, 0, 1, 2, 8, 25, 67, 134, 309, 709, 1579, 3420, 7240, 15077, 30997, 61994, 125364, 253712, 512411, 1032453, 2075737, 4166469, 8352851, 16731873, 33497422, 67038086, 134130344, 268328977, 536741608, 1073586022, 2147296425, 4294592850, 8589346462, 17179033384
OFFSET
0,5
COMMENTS
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
FORMULA
a(2^n - 1) = A367903(n).
Partial sums of A370589.
EXAMPLE
The a(0) = 0 through a(5) = 8 subsets:
. . . {1,2,3} {1,2,3} {1,2,3}
{1,2,3,4} {1,4,5}
{1,2,3,4}
{1,2,3,5}
{1,2,4,5}
{1,3,4,5}
{2,3,4,5}
{1,2,3,4,5}
MATHEMATICA
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
Table[Length[Select[Subsets[Range[n]], Select[Tuples[bpe/@#], UnsameQ@@#&]=={}&]], {n, 0, 10}]
CROSSREFS
Simple graphs not of this type are counted by A133686, covering A367869.
Unlabeled graphs of this type are counted by A140637, complement A134964.
Simple graphs of this type are counted by A367867, covering A367868.
Set systems not of this type are counted by A367902, ranks A367906.
Set systems of this type are counted by A367903, ranks A367907.
Set systems uniquely not of this type are counted by A367904, ranks A367908.
Unlabeled multiset partitions of this type are A368097, complement A368098.
A version for MM-numbers of multisets is A355529, complement A368100.
Factorizations are counted by A368413/A370813, complement A368414/A370814.
The complement for prime indices is A370582, differences A370586.
For prime indices we have A370583, differences A370587.
First differences are A370589.
The complement is counted by A370636, differences A370639.
The case without ones is A370643.
The version for a unique choice is A370638, maxima A370640, diffs A370641.
The minimal case is A370642, without ones A370644.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A058891 counts set-systems, A003465 covering, A323818 connected.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 08 2024
EXTENSIONS
a(21)-a(34) from Alois P. Heinz, Mar 09 2024
STATUS
approved
Number of integer partitions of n such that the number of parts is equal to the number of distinct divisors of parts.
+10
18
1, 1, 0, 1, 2, 0, 4, 2, 4, 5, 5, 11, 10, 16, 17, 21, 26, 32, 44, 53, 69, 71, 101, 110, 148, 168, 205, 249, 289, 356, 418, 502, 589, 716, 812, 999, 1137, 1365, 1566, 1873, 2158, 2537, 2942, 3449, 4001, 4613, 5380, 6193, 7220, 8224, 9575, 10926, 12683, 14430
OFFSET
0,5
COMMENTS
The Heinz numbers of these partitions are given by A370802.
EXAMPLE
The partition (6,2,2,1) has 4 parts and 4 distinct divisors of parts {1,2,3,6} so is counted under a(11).
The a(1) = 1 through a(11) = 11 partitions:
(1) . (21) (22) . (33) (322) (71) (441) (55) (533)
(31) (51) (421) (332) (522) (442) (722)
(321) (422) (531) (721) (731)
(411) (521) (4311) (4321) (911)
(6111) (6211) (4322)
(4331)
(5321)
(5411)
(6221)
(6311)
(8111)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], Length[#]==Length[Union@@Divisors/@#]&]], {n, 0, 30}]
CROSSREFS
The LHS is represented by A001222, distinct A000021.
These partitions are ranked by A370802.
The RHS is represented by A370820, for prime factors A303975.
The strict case is A371128.
For (greater than) instead of (equal to) we have A371171, ranks A370348.
For submultisets instead of parts on the LHS we have A371172.
For (less than) instead of (equal to) we have A371173, ranked by A371168.
Counting only distinct parts on the LHS gives A371178, ranks A371177.
A000005 counts divisors.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length.
Choosable partitions: A239312 (A368110), A355740 (A370320), A370592 (A368100), A370593 (A355529).
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 17 2024
STATUS
approved
Number of integer partitions of n with more parts than distinct divisors of parts.
+10
15
0, 0, 1, 1, 2, 4, 5, 9, 12, 18, 26, 34, 50, 65, 92, 121, 161, 209, 274, 353, 456, 590, 745, 950, 1195, 1507, 1885, 2350, 2923, 3611, 4465, 5485, 6735, 8223, 10050, 12195, 14822, 17909, 21653, 26047, 31340, 37557, 44990, 53708, 64068, 76241, 90583, 107418
OFFSET
1,5
COMMENTS
The Heinz numbers of these partitions are given by A370348.
EXAMPLE
The partition (3,2,1,1) has 4 parts {1,2,3,4} and 3 distinct divisors of parts {1,2,3}, so is counted under a(7).
The a(0) = 0 through a(8) = 12 partitions:
. . (11) (111) (211) (221) (222) (331) (2222)
(1111) (311) (2211) (511) (3221)
(2111) (3111) (2221) (3311)
(11111) (21111) (3211) (4211)
(111111) (4111) (5111)
(22111) (22211)
(31111) (32111)
(211111) (41111)
(1111111) (221111)
(311111)
(2111111)
(11111111)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], Length[#] > Length[Union@@Divisors/@#]&]], {n, 0, 30}]
CROSSREFS
The partitions are ranked by A370348.
The opposite version is A371173, ranked by A371168.
The RHS is represented by A370820, positions of twos A371127.
The version for equality is A371130 (ranks A370802), strict A371128.
For submultisets instead of parts on the LHS we get ranks A371167.
A000005 counts divisors.
Choosable partitions: A239312 (A368110), A355740 (A370320), A370592 (A368100), A370593 (A355529).
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 16 2024
STATUS
approved

Search completed in 0.020 seconds