# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a370802 Showing 1-1 of 1 %I A370802 #12 Mar 23 2024 22:13:23 %S A370802 1,2,6,9,10,22,25,28,30,34,42,45,62,63,66,75,82,92,98,99,102,104,110, %T A370802 118,121,134,140,147,152,153,156,166,170,186,210,218,228,230,232,234, %U A370802 246,254,260,275,276,279,289,308,310,314,315,330,342,343,344,348,350 %N A370802 Positive integers with as many prime factors (A001222) as distinct divisors of prime indices (A370820). %C A370802 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A370802 All squarefree terms are even. %F A370802 A001222(a(n)) = A370820(a(n)). %e A370802 The prime indices of 1617 are {2,4,4,5}, with distinct divisors {1,2,4,5}, so 1617 is in the sequence. %e A370802 The terms together with their prime indices begin: %e A370802 1: {} %e A370802 2: {1} %e A370802 6: {1,2} %e A370802 9: {2,2} %e A370802 10: {1,3} %e A370802 22: {1,5} %e A370802 25: {3,3} %e A370802 28: {1,1,4} %e A370802 30: {1,2,3} %e A370802 34: {1,7} %e A370802 42: {1,2,4} %e A370802 45: {2,2,3} %e A370802 62: {1,11} %e A370802 63: {2,2,4} %e A370802 66: {1,2,5} %e A370802 75: {2,3,3} %e A370802 82: {1,13} %e A370802 92: {1,1,9} %e A370802 98: {1,4,4} %e A370802 99: {2,2,5} %e A370802 102: {1,2,7} %e A370802 104: {1,1,1,6} %t A370802 Select[Range[100],PrimeOmega[#]==Length[Union @@ Divisors/@PrimePi/@First/@If[#==1,{},FactorInteger[#]]]&] %Y A370802 For factors instead of divisors on the RHS we have A319899. %Y A370802 A version for binary indices is A367917. %Y A370802 For (greater than) instead of (equal) we have A370348, counted by A371171. %Y A370802 The RHS is A370820, for prime factors instead of divisors A303975. %Y A370802 Partitions of this type are counted by A371130, strict A371128. %Y A370802 For divisors instead of factors on LHS we have A371165, counted by A371172. %Y A370802 For only distinct prime factors on LHS we have A371177, counted by A371178. %Y A370802 Other inequalities: A371166, A371167, A371169, A371170. %Y A370802 A000005 counts divisors. %Y A370802 A001221 counts distinct prime factors. %Y A370802 A027746 lists prime factors, A112798 indices, length A001222. %Y A370802 A239312 counts divisor-choosable partitions, ranks A368110. %Y A370802 A355731 counts choices of a divisor of each prime index, firsts A355732. %Y A370802 A370320 counts non-divisor-choosable partitions, ranks A355740. %Y A370802 Cf. A000792, A003963, A355529, A355737, A355739, A355741, A368100, A370808, A370813, A370814, A371127. %K A370802 nonn %O A370802 1,2 %A A370802 _Gus Wiseman_, Mar 14 2024 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE