Displaying 1-5 of 5 results found.
page
1
Number of unoriented colorings of the 120 dodecahedral facets of the 4-D 120-cell (or 120 vertices of the 4-D 600-cell) using subsets of a set of n colors.
+10
13
1, 92307499707443390526727850063504, 124792381938502167392338612231208163827413085862945471, 122697712831832245109951221276235414511846772206539032522116543043328
COMMENTS
Each chiral pair is counted as one when enumerating unoriented arrangements. The Schläfli symbols of the 120-cell and 600-cell are {5,3,3} and {3,3,5} respectively. They are mutually dual.
Sequences for other elements of the 120-cell and 600-cell are not suitable for the OEIS as the first significant datum is too big. We provide formulas here.
For the 600 facets of the 600-cell (vertices of the 120-cell), the formula is (960*n^20 + 1440*n^30 + 960*n^40 + 1200*n^50 + 2064*n^60 + 1440*n^66 + 40*n^100 + 1600*n^104 + 1200*n^114 + 624*n^120 + 60*n^150 + 1800*n^152 + 40*n^200 + 400*n^208 + 61*n^300 + 450*n^302 + 60*n^330 + n^600) / 14400.
For the 720 pentagonal faces of the 120-cell (edges of the 600-cell), the formula is (960 n^24 + 1440 n^36 + 960 n^48 + 1200 n^60 + 336 n^72 + 1728 n^76 + 1440 n^84 + 1640 n^120 + 1200 n^132 + 336 n^144 + 288 n^152 + 60 n^180 + 1800 n^182 + 440 n^240 + 61 n^360 + 450 n^364 + 60 n^396 + n^720) / 14400.
For the 1200 edges of the 120-cell (triangular faces of the 600-cell), the formula is (960*n^40 + 1440*n^60 + 960*n^80 + 1200*n^100 + 2064*n^120 + 1440*n^128 + 40*n^200 + 1600*n^202 + 1200*n^216 + 624*n^240 + 60*n^300 + 1800*n^302 + 40*n^400 + 400*n^404 + 61*n^600 + 450*n^604 + 60*n^640 + n^1200) / 14400.
FORMULA
a(n) = (960*n^4 + 1440*n^6 + 960*n^8 + 1200*n^10 + 336*n^12 + 288*n^16 + 1440*n^17 + 1440*n^19 + 40*n^20 + 400*n^22 + 1200*n^23 + 336*n^24 + 1200*n^27 + 60*n^30 + 1800*n^31 + 288*n^32 + 40*n^40 + 400*n^44 + n^60 + 60*n^61 + 450*n^62 + 60*n^75 +*n^120) / 14400.
a(n) = Sum_{j=1..Min(n,120)} A338981(n) * binomial(n,j).
MATHEMATICA
Table[(960n^4+1440n^6+960n^8+1200n^10+336n^12+288n^16+1440n^17+1440n^19+40n^20+400n^22+1200n^23+336n^24+1200n^27+60n^30+1800n^31+288n^32+40n^40+400n^44+n^60+60n^61+450n^62+60n^75+n^120)/14400, {n, 10}]
Number of oriented colorings of the 120 dodecahedral facets of the 4-D 120-cell (or 120 vertices of the 4-D 600-cell) using exactly n colors.
+10
6
0, 1, 184614999414571937405905419562270, 249584763877004334779054488506782340719383629107224173, 245395425663663491880846922641400894840783985813370231599231766603156
COMMENTS
Each chiral pair is counted as two when enumerating oriented arrangements. The Schläfli symbols of the 120-cell and 600-cell are {5,3,3} and {3,3,5} respectively. They are mutually dual. For n>120, a(n) = 0.
Sequences for other elements of the 120-cell and 600-cell are not suitable for the OEIS as the first significant datum is too big. We provide generating functions here using bp(j) = Sum_{k=1..j} k! * S2(j,k) * x^k.
For the 600 facets of the 600-cell (vertices of the 120-cell), the generating function is 2*bp(20)/15 + bp(30)/5 + 2*bp(40)/15 + bp(50)/6 + 13*bp(60)/150 + bp(100)/180 + bp(104)/18 + 13*bp(120)/150 + bp(150)/120 + bp(200)/180 + bp(208)/18 + bp(300)/7200 + bp(302)/16 + bp(600)/7200.
For the 720 pentagonal faces of the 120-cell (edges of the 600-cell), the generating function is 2*bp(24)/15 + bp(36)/5 + 2*bp(48)/15 + bp(60)/6 + 7*bp(72)/150 + bp(76)/25 + 11*bp(120)/180 + 7*bp(144)/150 + bp(152)/25 + bp(180)/120 + 11*bp(240)/180 + bp(360)/7200 + bp(364)/16 + bp(720)/7200.
For the 1200 edges of the 120-cell (triangular faces of the 600-cell), the generating function is 2*bp(40)/15 + bp(60)/5 + 2*bp(80)/15 + bp(100)/6 + 13*bp(120)/150 + bp(200)/180 + bp(202)/18 + 13*bp(240)/150 + bp(300)/120 + bp(400)/180 + bp(404)/18 + bp(600)/7200 + bp(604)/16 + bp(1200)/7200.
FORMULA
A338964(n) = Sum_{j=1..Min(n,120)} a(n) * binomial(n,j).
G.f.: 2*bp(4)/15 + bp(6)/5 + 2*bp(8)/15 + bp(10)/6 + 7*bp(12)/150 + bp(16)/25 + bp(20)/180 + bp(22)/18 + 7*bp(24)/150 + bp(30)/120 + bp(32)/25 + bp(40)/180 + bp(44)/18 + bp(60)/7200 + bp(62)/16 + bp(120)/7200, where bp(j) = Sum_{k=1..j} k! * S2(j,k) * x^k and S2(j,k) is the Stirling subset number, A008277.
MATHEMATICA
bp[j_] := Sum[k! StirlingS2[j, k] x^k, {k, j}] (*binomial series*)
CoefficientList[2bp[4]/15+bp[6]/5+2bp[8]/15+bp[10]/6+7bp[12]/150+bp[16]/25+bp[20]/180+bp[22]/18+7bp[24]/150+bp[30]/120+bp[32]/25+bp[40]/180+bp[44]/18+bp[60]/7200+bp[62]/16+bp[120]/7200, x]
Number of chiral pairs of colorings of the 120 dodecahedral facets of the 4-D 120-cell (or 120 vertices of the 4-D 600-cell) using exactly n colors.
+10
6
0, 0, 92307499707128546879177569498768, 124792381938502167386992798774696507063550726794469211, 122697712831831745940423455373835049129541140194826165569091574960692
COMMENTS
Each member of a chiral pair is a reflection but not a rotation of the other. The Schläfli symbols of the 120-cell and 600-cell are {5,3,3} and {3,3,5} respectively. They are mutually dual. For n>120, a(n) = 0.
Sequences for other elements of the 120-cell and 600-cell are not suitable for the OEIS as the first significant datum is too big. We provide generating functions here using bp(j) = Sum_{k=1..j} k! * S2(j,k) * x^k.
For the 600 facets of the 600-cell (vertices of the 120-cell), the generating function is bp(20)/15 + bp(30)/10 + bp(40)/15 + bp(50)/12 - 17*bp(60)/300 - bp(66)/10 + bp(100)/360 - bp(104)/18 - bp(114)/12 + 13*bp(120)/300 + bp(150)/240 - bp(152)/8 + bp(200)/360 + bp(208)/36 - 59*bp(300)/14400 + bp(302)/32 - bp(330)/240 + bp(600)/14400.
For the 720 pentagonal faces of the 120-cell (edges of the 600-cell), the generating function is bp(24)/15 + bp(36)/10 + bp(48)/15 + bp(60)/12 + 7*bp(72)/300 - 2*bp(76)/25 - bp(84)/10 - 19*bp(120)/360 - bp(132)/12 + 7*bp(144)/300 + bp(152)/50 + bp(180)/240 - bp(182)/8 + 11*bp(240)/360 - 59*bp(360)/14400 + bp(364)/32 - bp(396)/240 + bp(720)/14400.
For the 1200 edges of the 120-cell (triangular faces of the 600-cell), the generating function is bp(40)/15 + bp(60)/10 + bp(80)/15 + bp(100)/12 - 17*bp(120)/300 - bp(128)/10 + bp(200)/360 - bp(202)/18 - bp(216)/12 + 13*bp(240)/300 + bp(300)/240 - bp(302)/8 + bp(400)/360 + bp(404)/36 - 59*bp(600)/14400 + bp(604)/32 - bp(640)/240 + bp(1200)/14400.
FORMULA
A338966(n) = Sum_{j=2..Min(n,120)} a(n) * binomial(n,j).
G.f.: bp(4)/15 + bp(6)/10 + bp(8)/15 + bp(10)/12 + 7*bp(12)/300 + bp(16)/50 - bp(17)/10 - bp(19)/10 + bp(20)/360 + bp(22)/36 - bp(23)/12 + 7*bp(24)/300 - bp(27)/12 + bp(30)/240 - bp(31)/8 + bp(32)/50 + bp(40)/360 + bp(44)/36 + bp(60)/14400 - bp(61)/240 + bp(62)/32 - bp(75)/240 + bp(120)/14400, where bp(j) = Sum_{k=1..j} k! * S2(j,k) * x^k and S2(j,k) is the Stirling subset number, A008277.
MATHEMATICA
bp[j_] := Sum[k! StirlingS2[j, k] x^k, {k, j}] (*binomial series*)
CoefficientList[bp[4]/15+bp[6]/10+bp[8]/15+bp[10]/12+7bp[12]/300+bp[16]/50-bp[17]/10-bp[19]/10+bp[20]/360+bp[22]/36-bp[23]/12+7bp[24]/300-bp[27]/12+bp[30]/240-bp[31]/8+bp[32]/50+bp[40]/360+bp[44]/36+bp[60]/14400-bp[61]/240+bp[62]/32-bp[75]/240+bp[120]/14400, x]
Number of chiral pairs of colorings of the 120 dodecahedral facets of the 4-D 120-cell (or 120 vertices of the 4-D 600-cell) using exactly n colors.
+10
6
0, 1, 314843647550280564734, 5068890957389326592282175518285751, 11893730796581701705423717900461048616681772, 220581437248293418784474364671733389683204494492535
COMMENTS
An achiral coloring is identical to its reflection. The Schläfli symbols of the 120-cell and 600-cell are {5,3,3} and {3,3,5} respectively. They are mutually dual. For n>75, a(n) = 0.
Sequences for other elements of the 120-cell and 600-cell are not suitable for the OEIS as the first significant datum is too big. We provide generating functions here using bp(j) = Sum_{k=1..j} k! * S2(j,k) * x^k.
For the 600 facets of the 600-cell (vertices of the 120-cell), the generating function is bp(60)/5 + bp(66)/5 + bp(104)/6 + bp(114)/6 + bp(152)/4 + bp(300)/120 + bp(330)/120.
For the 720 pentagonal faces of the 120-cell (edges of the 600-cell), the generating function is bp(76)/5 + bp(84)/5 + bp(120)/6 + bp(132)/6 + bp(182)/4 + bp(360)/120 + bp(396)/120.
For the 1200 edges of the 120-cell (triangular faces of the 600-cell), the generating function is bp(120)/5 + bp(128)/5 + bp(202)/6 + bp(216)/6 + bp(302)/4 + bp(600)/120 + bp(640)/120.
FORMULA
A338967(n) = Sum_{j=1..Min(n,75)} a(n) * binomial(n,j).
G.f.: bp(17)/5 + bp(19)/5 + bp(23)/6 + bp(27)/6 + bp(31)/4 + bp(61)/120 + bp(75)/120, where bp(j) = Sum_{k=1..j} k! * S2(j,k) * x^k and S2(j,k) is the Stirling subset number, A008277.
MATHEMATICA
bp[j_] := Sum[k! StirlingS2[j, k] x^k, {k, j}] (*binomial series*)
CoefficientList[bp[17]/5+bp[19]/5+bp[23]/6+bp[27]/6+bp[31]/4+bp[61]/120+bp[75]/120, x]
Number of unoriented colorings of the 96 edges (or triangular faces) of the 4-D 24-cell using exactly n colors.
+10
5
1, 68774446639102959610154174, 5523164445430505754875774375105924818979901, 5448873034167734394172913824852272971748608894646534804, 10956401434158576570935668826433407535831446552957081921713485225
COMMENTS
Each chiral pair is counted as one when enumerating unoriented arrangements. The Schläfli symbol of the 24-cell is {3,4,3}. It has 24 octahedral facets. It is self-dual. For n>96, a(n) = 0.
FORMULA
A338953(n) = Sum_{j=1..Min(n,96)} a(n) * binomial(n,j).
MATHEMATICA
bp[j_] := Sum[k! StirlingS2[j, k] x^k, {k, 0, j}] (* binomial series *)
Drop[CoefficientList[bp[8]/12+bp[12]/8+bp[16]/8+bp[18]/9+bp[20]/6+19bp[24]/96+bp[32]/24+bp[36]/36+43bp[48]/1152+bp[50]/16+bp[52]/96+bp[60]/96+bp[96]/1152, x], 1]
CROSSREFS
Cf. A338956 (oriented), A338958 (chiral), A338959 (achiral), A338953 (up to n colors), A338949 (vertices, facets), A063843 (5-cell), A331359 (8-cell edges, 16-cell faces), A331355 (16-cell edges, 8-cell faces), A338981 (120-cell, 600-cell).
Search completed in 0.011 seconds
|