[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a338981 -id:a338981
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of unoriented colorings of the 120 dodecahedral facets of the 4-D 120-cell (or 120 vertices of the 4-D 600-cell) using subsets of a set of n colors.
+10
13
1, 92307499707443390526727850063504, 124792381938502167392338612231208163827413085862945471, 122697712831832245109951221276235414511846772206539032522116543043328
OFFSET
1,2
COMMENTS
Each chiral pair is counted as one when enumerating unoriented arrangements. The Schläfli symbols of the 120-cell and 600-cell are {5,3,3} and {3,3,5} respectively. They are mutually dual.
Sequences for other elements of the 120-cell and 600-cell are not suitable for the OEIS as the first significant datum is too big. We provide formulas here.
For the 600 facets of the 600-cell (vertices of the 120-cell), the formula is (960*n^20 + 1440*n^30 + 960*n^40 + 1200*n^50 + 2064*n^60 + 1440*n^66 + 40*n^100 + 1600*n^104 + 1200*n^114 + 624*n^120 + 60*n^150 + 1800*n^152 + 40*n^200 + 400*n^208 + 61*n^300 + 450*n^302 + 60*n^330 + n^600) / 14400.
For the 720 pentagonal faces of the 120-cell (edges of the 600-cell), the formula is (960 n^24 + 1440 n^36 + 960 n^48 + 1200 n^60 + 336 n^72 + 1728 n^76 + 1440 n^84 + 1640 n^120 + 1200 n^132 + 336 n^144 + 288 n^152 + 60 n^180 + 1800 n^182 + 440 n^240 + 61 n^360 + 450 n^364 + 60 n^396 + n^720) / 14400.
For the 1200 edges of the 120-cell (triangular faces of the 600-cell), the formula is (960*n^40 + 1440*n^60 + 960*n^80 + 1200*n^100 + 2064*n^120 + 1440*n^128 + 40*n^200 + 1600*n^202 + 1200*n^216 + 624*n^240 + 60*n^300 + 1800*n^302 + 40*n^400 + 400*n^404 + 61*n^600 + 450*n^604 + 60*n^640 + n^1200) / 14400.
FORMULA
a(n) = (960*n^4 + 1440*n^6 + 960*n^8 + 1200*n^10 + 336*n^12 + 288*n^16 + 1440*n^17 + 1440*n^19 + 40*n^20 + 400*n^22 + 1200*n^23 + 336*n^24 + 1200*n^27 + 60*n^30 + 1800*n^31 + 288*n^32 + 40*n^40 + 400*n^44 + n^60 + 60*n^61 + 450*n^62 + 60*n^75 +*n^120) / 14400.
a(n) = Sum_{j=1..Min(n,120)} A338981(n) * binomial(n,j).
a(n) = A338964(n) - A338966(n) =(A338964(n) + A338967(n)) / 2 = A338966(n) + A338967(n).
MATHEMATICA
Table[(960n^4+1440n^6+960n^8+1200n^10+336n^12+288n^16+1440n^17+1440n^19+40n^20+400n^22+1200n^23+336n^24+1200n^27+60n^30+1800n^31+288n^32+40n^40+400n^44+n^60+60n^61+450n^62+60n^75+n^120)/14400, {n, 10}]
CROSSREFS
Cf. A338964 (oriented), A338966 (chiral), A338967 (achiral), A338981 (exactly n colors), A000389 (5-cell), A128767 (8-cell vertices, 16-cell facets), A337957(16-cell vertices, 8-cell facets), A338949 (24-cell).
KEYWORD
nonn,easy
AUTHOR
Robert A. Russell, Dec 04 2020
STATUS
approved
Number of oriented colorings of the 120 dodecahedral facets of the 4-D 120-cell (or 120 vertices of the 4-D 600-cell) using exactly n colors.
+10
6
0, 1, 184614999414571937405905419562270, 249584763877004334779054488506782340719383629107224173, 245395425663663491880846922641400894840783985813370231599231766603156
OFFSET
0,3
COMMENTS
Each chiral pair is counted as two when enumerating oriented arrangements. The Schläfli symbols of the 120-cell and 600-cell are {5,3,3} and {3,3,5} respectively. They are mutually dual. For n>120, a(n) = 0.
Sequences for other elements of the 120-cell and 600-cell are not suitable for the OEIS as the first significant datum is too big. We provide generating functions here using bp(j) = Sum_{k=1..j} k! * S2(j,k) * x^k.
For the 600 facets of the 600-cell (vertices of the 120-cell), the generating function is 2*bp(20)/15 + bp(30)/5 + 2*bp(40)/15 + bp(50)/6 + 13*bp(60)/150 + bp(100)/180 + bp(104)/18 + 13*bp(120)/150 + bp(150)/120 + bp(200)/180 + bp(208)/18 + bp(300)/7200 + bp(302)/16 + bp(600)/7200.
For the 720 pentagonal faces of the 120-cell (edges of the 600-cell), the generating function is 2*bp(24)/15 + bp(36)/5 + 2*bp(48)/15 + bp(60)/6 + 7*bp(72)/150 + bp(76)/25 + 11*bp(120)/180 + 7*bp(144)/150 + bp(152)/25 + bp(180)/120 + 11*bp(240)/180 + bp(360)/7200 + bp(364)/16 + bp(720)/7200.
For the 1200 edges of the 120-cell (triangular faces of the 600-cell), the generating function is 2*bp(40)/15 + bp(60)/5 + 2*bp(80)/15 + bp(100)/6 + 13*bp(120)/150 + bp(200)/180 + bp(202)/18 + 13*bp(240)/150 + bp(300)/120 + bp(400)/180 + bp(404)/18 + bp(600)/7200 + bp(604)/16 + bp(1200)/7200.
LINKS
FORMULA
A338964(n) = Sum_{j=1..Min(n,120)} a(n) * binomial(n,j).
a(n) = A338981(n) + A338982(n) = 2*A338981(n) - A338983(n) = 2*A338982(n) + A338983(n).
G.f.: 2*bp(4)/15 + bp(6)/5 + 2*bp(8)/15 + bp(10)/6 + 7*bp(12)/150 + bp(16)/25 + bp(20)/180 + bp(22)/18 + 7*bp(24)/150 + bp(30)/120 + bp(32)/25 + bp(40)/180 + bp(44)/18 + bp(60)/7200 + bp(62)/16 + bp(120)/7200, where bp(j) = Sum_{k=1..j} k! * S2(j,k) * x^k and S2(j,k) is the Stirling subset number, A008277.
MATHEMATICA
bp[j_] := Sum[k! StirlingS2[j, k] x^k, {k, j}] (*binomial series*)
CoefficientList[2bp[4]/15+bp[6]/5+2bp[8]/15+bp[10]/6+7bp[12]/150+bp[16]/25+bp[20]/180+bp[22]/18+7bp[24]/150+bp[30]/120+bp[32]/25+bp[40]/180+bp[44]/18+bp[60]/7200+bp[62]/16+bp[120]/7200, x]
CROSSREFS
Cf. A338981 (unoriented), A338982 (chiral), A338983 (achiral), A338964 (up to n colors), A337895 (5-cell), A337952 (8-cell vertices, 16-cell facets), A337956 (16-cell vertices, 8-cell facets), A338948 (24-cell).
KEYWORD
nonn,easy,fini
AUTHOR
Robert A. Russell, Dec 13 2020
STATUS
approved
Number of chiral pairs of colorings of the 120 dodecahedral facets of the 4-D 120-cell (or 120 vertices of the 4-D 600-cell) using exactly n colors.
+10
6
0, 0, 92307499707128546879177569498768, 124792381938502167386992798774696507063550726794469211, 122697712831831745940423455373835049129541140194826165569091574960692
OFFSET
0,3
COMMENTS
Each member of a chiral pair is a reflection but not a rotation of the other. The Schläfli symbols of the 120-cell and 600-cell are {5,3,3} and {3,3,5} respectively. They are mutually dual. For n>120, a(n) = 0.
Sequences for other elements of the 120-cell and 600-cell are not suitable for the OEIS as the first significant datum is too big. We provide generating functions here using bp(j) = Sum_{k=1..j} k! * S2(j,k) * x^k.
For the 600 facets of the 600-cell (vertices of the 120-cell), the generating function is bp(20)/15 + bp(30)/10 + bp(40)/15 + bp(50)/12 - 17*bp(60)/300 - bp(66)/10 + bp(100)/360 - bp(104)/18 - bp(114)/12 + 13*bp(120)/300 + bp(150)/240 - bp(152)/8 + bp(200)/360 + bp(208)/36 - 59*bp(300)/14400 + bp(302)/32 - bp(330)/240 + bp(600)/14400.
For the 720 pentagonal faces of the 120-cell (edges of the 600-cell), the generating function is bp(24)/15 + bp(36)/10 + bp(48)/15 + bp(60)/12 + 7*bp(72)/300 - 2*bp(76)/25 - bp(84)/10 - 19*bp(120)/360 - bp(132)/12 + 7*bp(144)/300 + bp(152)/50 + bp(180)/240 - bp(182)/8 + 11*bp(240)/360 - 59*bp(360)/14400 + bp(364)/32 - bp(396)/240 + bp(720)/14400.
For the 1200 edges of the 120-cell (triangular faces of the 600-cell), the generating function is bp(40)/15 + bp(60)/10 + bp(80)/15 + bp(100)/12 - 17*bp(120)/300 - bp(128)/10 + bp(200)/360 - bp(202)/18 - bp(216)/12 + 13*bp(240)/300 + bp(300)/240 - bp(302)/8 + bp(400)/360 + bp(404)/36 - 59*bp(600)/14400 + bp(604)/32 - bp(640)/240 + bp(1200)/14400.
LINKS
FORMULA
A338966(n) = Sum_{j=2..Min(n,120)} a(n) * binomial(n,j).
a(n) = A338980(n) - A338981(n) = (A338980(n) - A338983(n)) / 2 = A338981(n) - A338983(n).
G.f.: bp(4)/15 + bp(6)/10 + bp(8)/15 + bp(10)/12 + 7*bp(12)/300 + bp(16)/50 - bp(17)/10 - bp(19)/10 + bp(20)/360 + bp(22)/36 - bp(23)/12 + 7*bp(24)/300 - bp(27)/12 + bp(30)/240 - bp(31)/8 + bp(32)/50 + bp(40)/360 + bp(44)/36 + bp(60)/14400 - bp(61)/240 + bp(62)/32 - bp(75)/240 + bp(120)/14400, where bp(j) = Sum_{k=1..j} k! * S2(j,k) * x^k and S2(j,k) is the Stirling subset number, A008277.
MATHEMATICA
bp[j_] := Sum[k! StirlingS2[j, k] x^k, {k, j}] (*binomial series*)
CoefficientList[bp[4]/15+bp[6]/10+bp[8]/15+bp[10]/12+7bp[12]/300+bp[16]/50-bp[17]/10-bp[19]/10+bp[20]/360+bp[22]/36-bp[23]/12+7bp[24]/300-bp[27]/12+bp[30]/240-bp[31]/8+bp[32]/50+bp[40]/360+bp[44]/36+bp[60]/14400-bp[61]/240+bp[62]/32-bp[75]/240+bp[120]/14400, x]
CROSSREFS
Cf. A338980 (oriented), A338981 (unoriented), A338983 (achiral), A338966 (up to n colors), A000389 (5-cell), A337954 (8-cell vertices, 16-cell facets), A234249 (16-cell vertices, 8-cell facets), A338950 (24-cell).
KEYWORD
fini,nonn,easy
AUTHOR
Robert A. Russell, Dec 13 2020
STATUS
approved
Number of chiral pairs of colorings of the 120 dodecahedral facets of the 4-D 120-cell (or 120 vertices of the 4-D 600-cell) using exactly n colors.
+10
6
0, 1, 314843647550280564734, 5068890957389326592282175518285751, 11893730796581701705423717900461048616681772, 220581437248293418784474364671733389683204494492535
OFFSET
0,3
COMMENTS
An achiral coloring is identical to its reflection. The Schläfli symbols of the 120-cell and 600-cell are {5,3,3} and {3,3,5} respectively. They are mutually dual. For n>75, a(n) = 0.
Sequences for other elements of the 120-cell and 600-cell are not suitable for the OEIS as the first significant datum is too big. We provide generating functions here using bp(j) = Sum_{k=1..j} k! * S2(j,k) * x^k.
For the 600 facets of the 600-cell (vertices of the 120-cell), the generating function is bp(60)/5 + bp(66)/5 + bp(104)/6 + bp(114)/6 + bp(152)/4 + bp(300)/120 + bp(330)/120.
For the 720 pentagonal faces of the 120-cell (edges of the 600-cell), the generating function is bp(76)/5 + bp(84)/5 + bp(120)/6 + bp(132)/6 + bp(182)/4 + bp(360)/120 + bp(396)/120.
For the 1200 edges of the 120-cell (triangular faces of the 600-cell), the generating function is bp(120)/5 + bp(128)/5 + bp(202)/6 + bp(216)/6 + bp(302)/4 + bp(600)/120 + bp(640)/120.
LINKS
FORMULA
A338967(n) = Sum_{j=1..Min(n,75)} a(n) * binomial(n,j).
a(n) = 2*A338981(n) - A338980(n) = A338980(n) - 2*A338982(n) = A338981(n) - A338982(n).
G.f.: bp(17)/5 + bp(19)/5 + bp(23)/6 + bp(27)/6 + bp(31)/4 + bp(61)/120 + bp(75)/120, where bp(j) = Sum_{k=1..j} k! * S2(j,k) * x^k and S2(j,k) is the Stirling subset number, A008277.
MATHEMATICA
bp[j_] := Sum[k! StirlingS2[j, k] x^k, {k, j}] (*binomial series*)
CoefficientList[bp[17]/5+bp[19]/5+bp[23]/6+bp[27]/6+bp[31]/4+bp[61]/120+bp[75]/120, x]
CROSSREFS
Cf. A338980 (oriented), A338981 (unoriented), A338982 (chiral), A338967 (up to n colors), A132366 (5-cell), A337955 (8-cell vertices, 16-cell facets), A337958 (16-cell vertices, 8-cell facets), A338951 (24-cell).
KEYWORD
fini,nonn,easy
AUTHOR
Robert A. Russell, Dec 13 2020
STATUS
approved
Number of unoriented colorings of the 96 edges (or triangular faces) of the 4-D 24-cell using exactly n colors.
+10
5
1, 68774446639102959610154174, 5523164445430505754875774375105924818979901, 5448873034167734394172913824852272971748608894646534804, 10956401434158576570935668826433407535831446552957081921713485225
OFFSET
1,2
COMMENTS
Each chiral pair is counted as one when enumerating unoriented arrangements. The Schläfli symbol of the 24-cell is {3,4,3}. It has 24 octahedral facets. It is self-dual. For n>96, a(n) = 0.
LINKS
FORMULA
A338953(n) = Sum_{j=1..Min(n,96)} a(n) * binomial(n,j).
a(n) = A338956(n) - A338958(n) = (A338956(n) + A338959(n)) / 2 = A338958(n) + A338959(n).
MATHEMATICA
bp[j_] := Sum[k! StirlingS2[j, k] x^k, {k, 0, j}] (* binomial series *)
Drop[CoefficientList[bp[8]/12+bp[12]/8+bp[16]/8+bp[18]/9+bp[20]/6+19bp[24]/96+bp[32]/24+bp[36]/36+43bp[48]/1152+bp[50]/16+bp[52]/96+bp[60]/96+bp[96]/1152, x], 1]
CROSSREFS
Cf. A338956 (oriented), A338958 (chiral), A338959 (achiral), A338953 (up to n colors), A338949 (vertices, facets), A063843 (5-cell), A331359 (8-cell edges, 16-cell faces), A331355 (16-cell edges, 8-cell faces), A338981 (120-cell, 600-cell).
KEYWORD
fini,nonn,full
AUTHOR
Robert A. Russell, Nov 17 2020
STATUS
approved

Search completed in 0.011 seconds