[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338981
Number of unoriented colorings of the 120 dodecahedral facets of the 4-D 120-cell (or 120 vertices of the 4-D 600-cell) using exactly n colors.
6
0, 1, 92307499707443390526727850063502, 124792381938502167392061689732085833655832902312754962, 122697712831831745940423467267565845711242845618544066030140191642464
OFFSET
0,3
COMMENTS
Each chiral pair is counted as one when enumerating unoriented arrangements. The Schläfli symbols of the 120-cell and 600-cell are {5,3,3} and {3,3,5} respectively. They are mutually dual. For n>120, a(n) = 0.
Sequences for other elements of the 120-cell and 600-cell are not suitable for the OEIS as the first significant datum is too big. We provide generating functions here using bp(j) = Sum_{k=1..j} k! * S2(j,k) * x^k.
For the 600 facets of the 600-cell (vertices of the 120-cell), the generating function is bp(20)/15 + bp(30)/10 + bp(40)/15 + bp(50)/12 + 43*bp(60)/300 + bp(66)/10 + bp(100)/360 + bp(104)/9 + bp(114)/12 + 13*bp(120)/300 + bp(150)/240 + bp(152)/8 + bp(200)/360 + bp(208)/36 + 61*bp(300)/14400 + bp(302)/32 + bp(330)/240 + bp(600)/14400.
For the 720 pentagonal faces of the 120-cell (edges of the 600-cell), the generating function is bp(24)/15 + bp(36)/10 + bp(48)/15 + bp(60)/12 + 7*bp(72)/300 + 3*bp(76)/25 + bp(84)/10 + 41*bp(120)/360 + bp(132)/12 + 7*bp(144)/300 + bp(152)/50 + bp(180)/240 + bp(182)/8 + 11*bp(240)/360 + 61*bp(360)/14400 + bp(364)/32 + bp(396)/240 + bp(720)/14400.
For the 1200 edges of the 120-cell (triangular faces of the 600-cell), the generating function is bp(40)/15 + bp(60)/10 + bp(80)/15 + bp(100)/12 + 43*bp(120)/300 + bp(128)/10 + bp(200)/360 + bp(202)/9 + bp(216)/12 + 13*bp(240)/300 + bp(300)/240 + bp(302)/8 + bp(400)/360 + bp(404)/36 + 61*bp(600)/14400 + bp(604)/32 + bp(640)/240 + bp(1200)/14400.
LINKS
FORMULA
A338965(n) = Sum_{j=1..Min(n,120)} a(n) * binomial(n,j).
a(n) = A338980(n) - A338982(n) = (A338980(n) + A338983(n)) / 2 = A338982(n) + A338983(n).
G.f.: bp(4)/15 + bp(6)/10 + bp(8)/15 + bp(10)/12 + 7bp(12)/300 + bp(16)/50 + bp(17)/10 + bp(19)/10 + bp(20)/360 + bp(22)/36 + bp(23)/12 + 7bp(24)/300 + bp(27)/12 + bp(30)/240 + bp(31)/8 + bp(32)/50 + bp(40)/360 + bp(44)/36 + bp(60)/14400 + bp(61)/240 + bp(62)/32 + bp(75)/240 + bp(120)/14400, where bp(j) = Sum_{k=1..j} k! * S2(j,k) * x^k and S2(j,k) is the Stirling subset number, A008277.
MATHEMATICA
bp[j_] := Sum[k! StirlingS2[j, k] x^k, {k, j}] (*binomial series*)
CoefficientList[bp[4]/15+bp[6]/10+bp[8]/15+bp[10]/12+7bp[12]/300+bp[16]/50+bp[17]/10+bp[19]/10+bp[20]/360+bp[22]/36+bp[23]/12+7bp[24]/300+bp[27]/12+bp[30]/240+bp[31]/8+bp[32]/50+bp[40]/360+bp[44]/36+bp[60]/14400+bp[61]/240+bp[62]/32+bp[75]/240+bp[120]/14400, x]
CROSSREFS
Cf. A338980 (oriented), A338982 (chiral), A338983 (achiral), A338965 (up to n colors), A000389 (5-cell), A128767 (8-cell vertices, 16-cell facets), A337957 (16-cell vertices, 8-cell facets), A338949 (24-cell).
Sequence in context: A356072 A338982 A338966 * A338965 A095458 A338980
KEYWORD
fini,nonn,easy
AUTHOR
Robert A. Russell, Dec 13 2020
STATUS
approved