# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a338983 Showing 1-1 of 1 %I A338983 #17 Dec 20 2020 11:06:25 %S A338983 0,1,314843647550280564734,5068890957389326592282175518285751, %T A338983 11893730796581701705423717900461048616681772, %U A338983 220581437248293418784474364671733389683204494492535 %N A338983 Number of chiral pairs of colorings of the 120 dodecahedral facets of the 4-D 120-cell (or 120 vertices of the 4-D 600-cell) using exactly n colors. %C A338983 An achiral coloring is identical to its reflection. The Schläfli symbols of the 120-cell and 600-cell are {5,3,3} and {3,3,5} respectively. They are mutually dual. For n>75, a(n) = 0. %C A338983 Sequences for other elements of the 120-cell and 600-cell are not suitable for the OEIS as the first significant datum is too big. We provide generating functions here using bp(j) = Sum_{k=1..j} k! * S2(j,k) * x^k. %C A338983 For the 600 facets of the 600-cell (vertices of the 120-cell), the generating function is bp(60)/5 + bp(66)/5 + bp(104)/6 + bp(114)/6 + bp(152)/4 + bp(300)/120 + bp(330)/120. %C A338983 For the 720 pentagonal faces of the 120-cell (edges of the 600-cell), the generating function is bp(76)/5 + bp(84)/5 + bp(120)/6 + bp(132)/6 + bp(182)/4 + bp(360)/120 + bp(396)/120. %C A338983 For the 1200 edges of the 120-cell (triangular faces of the 600-cell), the generating function is bp(120)/5 + bp(128)/5 + bp(202)/6 + bp(216)/6 + bp(302)/4 + bp(600)/120 + bp(640)/120. %H A338983 Robert A. Russell, Table of n, a(n) for n = 0..75 %F A338983 A338967(n) = Sum_{j=1..Min(n,75)} a(n) * binomial(n,j). %F A338983 a(n) = 2*A338981(n) - A338980(n) = A338980(n) - 2*A338982(n) = A338981(n) - A338982(n). %F A338983 G.f.: bp(17)/5 + bp(19)/5 + bp(23)/6 + bp(27)/6 + bp(31)/4 + bp(61)/120 + bp(75)/120, where bp(j) = Sum_{k=1..j} k! * S2(j,k) * x^k and S2(j,k) is the Stirling subset number, A008277. %t A338983 bp[j_] := Sum[k! StirlingS2[j, k] x^k, {k, j}] (*binomial series*) %t A338983 CoefficientList[bp[17]/5+bp[19]/5+bp[23]/6+bp[27]/6+bp[31]/4+bp[61]/120+bp[75]/120,x] %Y A338983 Cf. A338980 (oriented), A338981 (unoriented), A338982 (chiral), A338967 (up to n colors), A132366 (5-cell), A337955 (8-cell vertices, 16-cell facets), A337958 (16-cell vertices, 8-cell facets), A338951 (24-cell). %K A338983 fini,nonn,easy %O A338983 0,3 %A A338983 _Robert A. Russell_, Dec 13 2020 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE