[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338950
Number of chiral pairs of colorings of the 24 octahedral facets (or 24 vertices) of the 4-D 24-cell using subsets of a set of n colors.
11
12232, 241146903, 243616903380, 51700252145825, 4112117375683170, 166286156041490247, 4099088542944703728, 69240138924298950135, 868045130573811864300, 8550057218442459279340, 69007402402972868503812
OFFSET
2,1
COMMENTS
Each member of a chiral pair is a reflection but not a rotation of the other. The Schläfli symbol of the 24-cell is {3,4,3}. It is self-dual.
LINKS
Index entries for linear recurrences with constant coefficients, signature (25, -300, 2300, -12650, 53130, -177100, 480700, -1081575, 2042975, -3268760, 4457400, -5200300, 5200300, -4457400, 3268760, -2042975, 1081575, -480700, 177100, -53130, 12650, -2300, 300, -25, 1).
FORMULA
a(n) = (96*n^2 + 144*n^3 - 48*n^4 - 52*n^6 - 228*n^7 - 24*n^8 + 36*n^9 + 21*n^12 + 60*n^13 + 18*n^14 - 12*n^15 - 12*n^18 + n^24) / 1152.
a(n) = 12232*C(n,2) + 241110207*C(n,3) + 242652389160*C(n,4) + 50484578975635*C(n,5) + 3805565293604340*C(n,6) + 138578521555036815*C(n,7) + 2881060406691096840*C(n,8) + 37995709352029326765*C(n,9) + 340998954354320550750*C(n,10) + 2186417251809922893300*C(n,11) + 10365972799754686653000*C(n,12) + 37236906263669699386800*C(n,13) + 103077047681129825503200*C(n,14) + 222282209861028829512000*C(n,15) + 375541963275099452832000*C(n,16) + 497391179860822639392000*C(n,17) + 513995707264282955712000*C(n,18) + 409785508676334510720000*C(n,19) + 247034122336026305280000*C(n,20) + 108861226736398456320000*C(n,21) + 33078014473191367680000*C(n,22) + 6193712343691192320000*C(n,23) + 538583682060103680000*C(n,24), where the coefficient of C(n,k) is the number of chiral pairs of colorings using exactly k colors.
a(n) = A338948(n) - A338949(n) = (A338948(n) - A338951(n)) / 2 = A338949(n) - A338951(n).
MATHEMATICA
Table[(96n^2+144n^3-48n^4-52n^6-228n^7-24n^8+36n^9+21n^12+60n^13+18n^14-12n^15-12n^18+n^24)/1152, {n, 2, 15}]
CROSSREFS
Cf. A338948 (oriented), A338949 (unoriented), A338951 (achiral), A338954 (edges, faces), A000389 (5-cell), A337954 (8-cell vertices, 16-cell facets), A234249(16-cell vertices, 8-cell facets), A338966 (120-cell, 600-cell).
Sequence in context: A013908 A035915 A104791 * A204873 A135128 A166000
KEYWORD
nonn,easy
AUTHOR
Robert A. Russell, Nov 17 2020
STATUS
approved