[go: up one dir, main page]

login
Search: a337957 -id:a337957
     Sort: relevance | references | number | modified | created      Format: long | short | data
Binomial coefficients C(n,5).
(Formerly M4142 N1719)
+10
153
0, 0, 0, 0, 0, 1, 6, 21, 56, 126, 252, 462, 792, 1287, 2002, 3003, 4368, 6188, 8568, 11628, 15504, 20349, 26334, 33649, 42504, 53130, 65780, 80730, 98280, 118755, 142506, 169911, 201376, 237336, 278256, 324632, 376992, 435897, 501942, 575757, 658008, 749398
OFFSET
0,7
COMMENTS
a(n+4) is the number of inequivalent ways of coloring the vertices of a regular 4-dimensional simplex with n colors, under the full symmetric group S_5 of order 120, with cycle index (x1^5 + 10*x1^3*x2 + 20*x1^2*x3 + 15*x1*x2^2 + 30*x1*x4 + 20*x2*x3 + 24*x5)/120.
Figurate numbers based on 5-dimensional regular simplex. According to Hyun Kwang Kim, it appears that every nonnegative integer can be represented as the sum of g = 10 of these 5-simplex(n) numbers (compared with g=3 for triangular numbers, g=5 for tetrahedral numbers and g=8 for pentatope numbers). - Jonathan Vos Post, Nov 28 2004
The convolution of the nonnegative integers (A001477) with the tetrahedral numbers (A000292), which are the convolution of the nonnegative integers with themselves (making appropriate allowances for offsets of all sequences). - Graeme McRae, Jun 07 2006
a(n) is the number of terms in the expansion of (a_1 + a_2 + a_3 + a_4 + a_5 + a_6)^n. - Sergio Falcon, Feb 12 2007
Product of five consecutive numbers divided by 120. - Artur Jasinski, Dec 02 2007
Equals binomial transform of [1, 5, 10, 10, 5, 1, 0, 0, 0, ...]. - Gary W. Adamson, Feb 02 2009
Equals INVERTi transform of A099242 (1, 7, 34, 153, 686, 3088, ...). - Gary W. Adamson, Feb 02 2009
For a team with n basketball players (n>=5), this sequence is the number of possible starting lineups of 5 players, without regard to the positions (center, forward, guard) of the players. - Mohammad K. Azarian, Sep 10 2009
a(n) is the number of different patterns, regardless of order, when throwing (n-5) 6-sided dice. For example, one die can display the 6 numbers 1, 2, ..., 6; two dice can display the 21 digit-pairs 11, 12, ..., 56, 66. - Ian Duff, Nov 16 2009
Sum of the first n pentatope numbers (1, 5, 15, 35, 70, 126, 210, ...), see A000332. - Paul Muljadi, Dec 16 2009
Sum_{n>=0} a(n)/n! = e/120. Sum_{n>=4} a(n)/(n-4)! = 501*e/120. See A067764 regarding the second ratio. - Richard R. Forberg, Dec 26 2013
For a set of integers {1,2,...,n}, a(n) is the sum of the 2 smallest elements of each subset with 4 elements, which is 3*C(n+1,5) (for n>=4), hence a(n) = 3*C(n+1,5) = 3*A000389(n+1). - Serhat Bulut, Mar 11 2015
a(n) = fallfac(n,5)/5! is also the number of independent components of an antisymmetric tensor of rank 5 and dimension n >= 1. Here fallfac is the falling factorial. - Wolfdieter Lang, Dec 10 2015
Number of compositions (ordered partitions) of n+1 into exactly 6 parts. - Juergen Will, Jan 02 2016
Number of weak compositions (ordered weak partitions) of n-5 into exactly 6 parts. - Juergen Will, Jan 02 2016
a(n+3) could be the general number of all geodetic graphs of diameter n>=2 homeomorphic to the Petersen Graph. - Carlos Enrique Frasser, May 24 2018
From Robert A. Russell, Dec 24 2020: (Start)
a(n) is the number of chiral pairs of colorings of the 5 tetrahedral facets (or vertices) of the regular 4-D simplex (5-cell, pentachoron, Schläfli symbol {3,3,3}) using subsets of a set of n colors. Each member of a chiral pair is a reflection but not a rotation of the other.
a(n+4) is the number of unoriented colorings of the 5 tetrahedral facets of the regular 4-D simplex (5-cell, pentachoron) using subsets of a set of n colors. Each chiral pair is counted as one when enumerating unoriented arrangements. (End)
For integer m and positive integer r >= 4, the polynomial a(n) + a(n + m) + a(n + 2*m) + ... + a(n + r*m) in n has its zeros on the vertical line Re(n) = (4 - r*m)/2 in the complex plane. - Peter Bala, Jun 02 2024
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 196.
L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 7.
Gupta, Hansraj; Partitions of j-partite numbers into twelve or a smaller number of parts. Collection of articles dedicated to Professor P. L. Bhatnagar on his sixtieth birthday. Math. Student 40 (1972), 401-441 (1974).
J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Serhat Bulut, Subset Sum Problem, 2015.
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
C. E. Frasser and G. N. Vostrov, Geodetic Graphs Homeomorphic to a Given Geodetic Graph, arXiv:1611.01873 [cs.DM], 2016. [p. 27]
H. Gupta, Partitions of j-partite numbers into twelve or a smaller number of parts, Math. Student 40 (1972), 401-441 (1974). [Annotated scanned copy]
H. K. Kim, On Regular Polytope Numbers, Proc. Amer.Math. Soc. 131 (2003), 65-75.
P. A. MacMahon, Memoir on the Theory of the Compositions of Numbers, Phil. Trans. Royal Soc. London A, 184 (1893), 835-901. - Juergen Will, Jan 02 2016
Ângela Mestre and José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
Rajesh Kumar Mohapatra and Tzung-Pei Hong, On the Number of Finite Fuzzy Subsets with Analysis of Integer Sequences, Mathematics (2022) Vol. 10, No. 7, 1161.
Alexsandar Petojevic, The Function vM_m(s; a; z) and Some Well-Known Sequences, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.7.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Eric Weisstein's World of Mathematics, Composition.
A. F. Y. Zhao, Pattern Popularity in Multiply Restricted Permutations, Journal of Integer Sequences, 17 (2014), #14.10.3.
FORMULA
G.f.: x^5/(1-x)^6.
a(n) = n*(n-1)*(n-2)*(n-3)*(n-4)/120.
a(n) = (n^5-10*n^4+35*n^3-50*n^2+24*n)/120. (Replace all x_i's in the cycle index with n.)
a(n+2) = Sum_{i+j+k=n} i*j*k. - Benoit Cloitre, Nov 01 2002
Convolution of triangular numbers (A000217) with themselves.
Partial sums of A000332. - Alexander Adamchuk, Dec 19 2004
a(n) = -A110555(n+1,5). - Reinhard Zumkeller, Jul 27 2005
a(n+3) = (1/2!)*(d^2/dx^2)S(n,x)|_{x=2}, n>=2, one half of second derivative of Chebyshev S-polynomials evaluated at x=2. See A049310. - Wolfdieter Lang, Apr 04 2007
a(n) = A052787(n+5)/120. - Zerinvary Lajos, Apr 26 2007
Sum_{n>=5} 1/a(n) = 5/4. - R. J. Mathar, Jan 27 2009
For n>4, a(n) = 1/(Integral_{x=0..Pi/2} 10*(sin(x))^(2*n-9)*(cos(x))^9). - Francesco Daddi, Aug 02 2011
Sum_{n>=5} (-1)^(n + 1)/a(n) = 80*log(2) - 655/12 = 0.8684411114... - Richard R. Forberg, Aug 11 2014
a(n) = -a(4-n) for all n in Z. - Michael Somos, Oct 07 2014
0 = a(n)*(+a(n+1) + 4*a(n+2)) + a(n+1)*(-6*a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Oct 07 2014
a(n) = 3*C(n+1, 5) = 3*A000389(n+1). - Serhat Bulut, Mar 11 2015
From Ilya Gutkovskiy, Jul 23 2016: (Start)
E.g.f.: x^5*exp(x)/120.
Inverse binomial transform of A054849. (End)
From Robert A. Russell, Dec 24 2020: (Start)
a(n) = A337895(n) - a(n+4) = (A337895(n) - A132366(n-1)) / 2 = a(n+4) - A132366(n-1).
a(n+4) = A337895(n) - a(n) = (A337895(n) + A132366(n-1)) / 2 = a(n) + A132366(n-1).
a(n+4) = 1*C(n,1) + 4*C(n,2) + 6*C(n,3) + 4*C(n,4) + 1*C(n,5), where the coefficient of C(n,k) is the number of unoriented pentachoron colorings using exactly k colors. (End)
EXAMPLE
G.f. = x^5 + 6*x^6 + 21*x^7 + 56*x^8 + 126*x^9 + 252*x^10 + 462*x^11 + ...
For A={1,2,3,4}, the only subset with 4 elements is {1,2,3,4}; sum of 2 minimum elements of this subset: a(4) = 1+2 = 3 = 3*C(4+1,5).
For A={1,2,3,4,5}, the subsets with 4 elements are {1,2,3,4}, {1,2,3,5}, {1,2,4,5}, {1,3,4,5}, {2,3,4,5}; sum of 2 smallest elements of each subset: a(5) = (1+2)+(1+2)+(1+2)+(1+3)+(2+3) = 18 = 3*C(5+1,5). - Serhat Bulut, Mar 11 2015
a(6) = 6 from the six independent components of an antisymmetric tensor A of rank 5 and dimension 6: A(1,2,3,4,5), A(1,2,3,4,6), A(1,2,3,5,6), A(1,2,4,5,6), A(1,3,4,5,6), A(2,3,4,5,6). See the Dec 10 2015 comment. - Wolfdieter Lang, Dec 10 2015
MAPLE
f:=n->(1/120)*(n^5-10*n^4+35*n^3-50*n^2+24*n): seq(f(n), n=0..60);
ZL := [S, {S=Prod(B, B, B, B, B, B), B=Set(Z, 1 <= card)}, unlabeled]: seq(combstruct[count](ZL, size=n+1), n=0..42); # Zerinvary Lajos, Mar 13 2007
A000389:=1/(z-1)**6; # Simon Plouffe, 1992 dissertation
MATHEMATICA
Table[Binomial[n, 5], {n, 5, 50}] (* Stefan Steinerberger, Apr 02 2006 *)
CoefficientList[Series[x^5 / (1 - x)^6, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 12 2015 *)
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 0, 0, 0, 0, 1}, 50] (* Harvey P. Dale, Jul 17 2016 *)
PROG
(PARI) (conv(u, v)=local(w); w=vector(length(u), i, sum(j=1, i, u[j]*v[i+1-j])); w);
(t(n)=n*(n+1)/2); u=vector(10, i, t(i)); conv(u, u)
(Haskell)
a000389 n = a000389_list !! n
a000389_list = 0 : 0 : f [] a000217_list where
f xs (t:ts) = (sum $ zipWith (*) xs a000217_list) : f (t:xs) ts
-- Reinhard Zumkeller, Mar 03 2015, Apr 13 2012
(Magma) [Binomial(n, 5): n in [0..40]]; // Vincenzo Librandi, Mar 12 2015
CROSSREFS
Cf. A099242. - Gary W. Adamson, Feb 02 2009
Cf. A242023. A104712 (fourth column, k=5).
5-cell colorings: A337895 (oriented), A132366(n-1) (achiral).
Unoriented colorings: A063843 (5-cell edges, faces), A128767 (8-cell vertices, 16-cell facets), A337957 (16-cell vertices, 8-cell facets), A338949 (24-cell), A338965 (600-cell vertices, 120-cell facets).
Chiral colorings: A331352 (5-cell edges, faces), A337954 (8-cell vertices, 16-cell facets), A234249 (16-cell vertices, 8-cell facets), A338950 (24-cell), A338966 (600-cell vertices, 120-cell facets).
KEYWORD
nonn,easy,nice
EXTENSIONS
Corrected formulas that had been based on other offsets. - R. J. Mathar, Jun 16 2009
I changed the offset to 0. This will require some further adjustments to the formulas. - N. J. A. Sloane, Aug 01 2010
STATUS
approved
Number of unoriented colorings of the 120 dodecahedral facets of the 4-D 120-cell (or 120 vertices of the 4-D 600-cell) using subsets of a set of n colors.
+10
13
1, 92307499707443390526727850063504, 124792381938502167392338612231208163827413085862945471, 122697712831832245109951221276235414511846772206539032522116543043328
OFFSET
1,2
COMMENTS
Each chiral pair is counted as one when enumerating unoriented arrangements. The Schläfli symbols of the 120-cell and 600-cell are {5,3,3} and {3,3,5} respectively. They are mutually dual.
Sequences for other elements of the 120-cell and 600-cell are not suitable for the OEIS as the first significant datum is too big. We provide formulas here.
For the 600 facets of the 600-cell (vertices of the 120-cell), the formula is (960*n^20 + 1440*n^30 + 960*n^40 + 1200*n^50 + 2064*n^60 + 1440*n^66 + 40*n^100 + 1600*n^104 + 1200*n^114 + 624*n^120 + 60*n^150 + 1800*n^152 + 40*n^200 + 400*n^208 + 61*n^300 + 450*n^302 + 60*n^330 + n^600) / 14400.
For the 720 pentagonal faces of the 120-cell (edges of the 600-cell), the formula is (960 n^24 + 1440 n^36 + 960 n^48 + 1200 n^60 + 336 n^72 + 1728 n^76 + 1440 n^84 + 1640 n^120 + 1200 n^132 + 336 n^144 + 288 n^152 + 60 n^180 + 1800 n^182 + 440 n^240 + 61 n^360 + 450 n^364 + 60 n^396 + n^720) / 14400.
For the 1200 edges of the 120-cell (triangular faces of the 600-cell), the formula is (960*n^40 + 1440*n^60 + 960*n^80 + 1200*n^100 + 2064*n^120 + 1440*n^128 + 40*n^200 + 1600*n^202 + 1200*n^216 + 624*n^240 + 60*n^300 + 1800*n^302 + 40*n^400 + 400*n^404 + 61*n^600 + 450*n^604 + 60*n^640 + n^1200) / 14400.
FORMULA
a(n) = (960*n^4 + 1440*n^6 + 960*n^8 + 1200*n^10 + 336*n^12 + 288*n^16 + 1440*n^17 + 1440*n^19 + 40*n^20 + 400*n^22 + 1200*n^23 + 336*n^24 + 1200*n^27 + 60*n^30 + 1800*n^31 + 288*n^32 + 40*n^40 + 400*n^44 + n^60 + 60*n^61 + 450*n^62 + 60*n^75 +*n^120) / 14400.
a(n) = Sum_{j=1..Min(n,120)} A338981(n) * binomial(n,j).
a(n) = A338964(n) - A338966(n) =(A338964(n) + A338967(n)) / 2 = A338966(n) + A338967(n).
MATHEMATICA
Table[(960n^4+1440n^6+960n^8+1200n^10+336n^12+288n^16+1440n^17+1440n^19+40n^20+400n^22+1200n^23+336n^24+1200n^27+60n^30+1800n^31+288n^32+40n^40+400n^44+n^60+60n^61+450n^62+60n^75+n^120)/14400, {n, 10}]
CROSSREFS
Cf. A338964 (oriented), A338966 (chiral), A338967 (achiral), A338981 (exactly n colors), A000389 (5-cell), A128767 (8-cell vertices, 16-cell facets), A337957(16-cell vertices, 8-cell facets), A338949 (24-cell).
KEYWORD
nonn,easy
AUTHOR
Robert A. Russell, Dec 04 2020
STATUS
approved
Number of ways to choose 4 points in an n X n X n triangular grid.
+10
11
15, 210, 1365, 5985, 20475, 58905, 148995, 341055, 720720, 1426425, 2672670, 4780230, 8214570, 13633830, 21947850, 34389810, 52602165, 78738660, 115584315, 166695375, 236561325, 330791175, 456326325, 621682425, 837222750, 1115465715, 1471429260, 1923014940
OFFSET
3,1
COMMENTS
Sequence is column #5 of A084546: a(n) = A084546(n+1, 4).
All elements of the sequence are multiples of 15.
a(n-1) is the number of chiral pairs of colorings of the 8 cubic facets of a tesseract (hypercube) with Schläfli symbol {4,3,3} or of the 8 vertices of a hyperoctahedron with Schläfli symbol {3,3,4}. Both figures are regular 4-D polyhedra and they are mutually dual. Each member of a chiral pair is a reflection, but not a rotation, of the other. - Robert A. Russell, Oct 20 2020
LINKS
Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
FORMULA
a(n) = n*(n + 1)*(n - 1)*(n + 2)*(n - 2)*(n + 3)*(n^2 + n - 4)/384.
a(n) = C(C(n + 1, 2), 4).
G.f.: -15*x^3*(x^2+5*x+1) / (x-1)^9. - Colin Barker, Feb 02 2014
From Robert A. Russell, Oct 20 2020: (Start)
a(n-1) = 15*C(n,4) + 135*C(n,5) + 330*C(n,6) + 315*C(n,7) + 105*C(n,8), where the coefficient of C(n,k) is the number of chiral pairs of colorings using exactly k colors.
a(n-1) = A337956(n) - A337957(n) = (A337956(n) - A337958(n)) / 2 = A337957(n) - A337958(n).
a(n-1) = A325006(4,n). (End)
MAPLE
A234249:=n->n*(n + 1)*(n - 1)*(n + 2)*(n - 2)*(n + 3)*(n^2 + n - 4)/384: seq(A234249(n), n=3..40); # Wesley Ivan Hurt, Jan 10 2017
MATHEMATICA
Table[Binomial[Binomial[n, 2], 4], {n, 4, 30}] (* Robert A. Russell, Oct 20 2020 *)
PROG
(PARI) Vec(-15*x^3*(x^2+5*x+1)/(x-1)^9 + O(x^100)) \\ Colin Barker, Feb 02 2014
CROSSREFS
Cf. A084546, A050534 (number of ways to choose 2 points), A093566 (3 points), A231653.
Cf. A337956 (oriented), A337956 (unoriented), A337956 (achiral) colorings, A331356 (hyperoctahedron edges, tesseract faces), A331360 (hyperoctahedron faces, tesseract edges), A337954 (hyperoctahedron facets, tesseract vertices).
Other polychora: A000389 (5-cell), A338950 (24-cell), A338966 (120-cell, 600-cell).
Row 4 of A325006 (orthotope facets, orthoplex vertices).
KEYWORD
nonn,easy
AUTHOR
Heinrich Ludwig, Feb 02 2014
STATUS
approved
Number of unoriented colorings of the 24 octahedral facets (or 24 vertices) of the 4-D 24-cell using subsets of a set of n colors.
+10
11
1, 18736, 249563343, 245072692820, 51780391393325, 4114243321427946, 166320182540310771, 4099464588809407728, 69243270244113372390, 868065984969662449300, 8550173137863803682016, 69007957379144017626756
OFFSET
1,2
COMMENTS
Each chiral pair is counted as one when enumerating unoriented arrangements. The Schläfli symbol of the 24-cell is {3,4,3}. It is self-dual.
LINKS
Index entries for linear recurrences with constant coefficients, signature (25, -300, 2300, -12650, 53130, -177100, 480700, -1081575, 2042975, -3268760, 4457400, -5200300, 5200300, -4457400, 3268760, -2042975, 1081575, -480700, 177100, -53130, 12650, -2300, 300, -25, 1).
FORMULA
a(n) = (96*n^2 + 144*n^3 + 144*n^4 + 140*n^6 + 300*n^7 + 120*n^8 + 36*n^9 + 45*n^12 + 84*n^13 + 18*n^14 + 12*n^15 + 12*n^18 + n^24) / 1152.
a(n) = 1*C(n,1) + 18734*C(n,2) + 249507138*C(n,3) + 244074551860*C(n,4) + 50557523375300*C(n,5) + 3807232072474470*C(n,6) + 138599298699649830*C(n,7) + 2881219380682352640*C(n,8) + 37996512548398853085*C(n,9) + 341001760994302265550*C(n,10) + 2186424231002014796100*C(n,11) + 10365985337974980021000*C(n,12) + 37236922591331944681200*C(n,13) + 103077062953464218018400*C(n,14) + 222282219864764987928000*C(n,15) + 375541967632270447008000*C(n,16) + 497391180994576316448000*C(n,17) + 513995707397665741248000*C(n,18) + 409785508676334510720000*C(n,19) + 247034122336026305280000*C(n,20) + 108861226736398456320000*C(n,21) + 33078014473191367680000*C(n,22) + 6193712343691192320000*C(n,23) + 538583682060103680000*C(n,24), where the coefficient of C(n,k) is the number of unoriented colorings using exactly k colors.
a(n) = A338948(n) - A338950(n) = (A338948(n) + A338951(n)) / 2 = A338950(n) + A338951(n).
MATHEMATICA
Table[(96n^2+144n^3+144n^4+140n^6+300n^7+120n^8+36n^9+45n^12+84n^13+18n^14+12n^15+12n^18+n^24)/1152, {n, 15}]
LinearRecurrence[{25, -300, 2300, -12650, 53130, -177100, 480700, -1081575, 2042975, -3268760, 4457400, -5200300, 5200300, -4457400, 3268760, -2042975, 1081575, -480700, 177100, -53130, 12650, -2300, 300, -25, 1}, {1, 18736, 249563343, 245072692820, 51780391393325, 4114243321427946, 166320182540310771, 4099464588809407728, 69243270244113372390, 868065984969662449300, 8550173137863803682016, 69007957379144017626756, 471182396311499869193288, 2790108355121570273031710, 14612960014479438426745050, 68774495831757984888966336, 294660451484256436406752191, 1161683435155207577365494648, 4252399462403852518286044405, 14563558286595288907896687700, 46968928774940328123724865031, 143447144215320073513164583826, 416884377543198363455158598933, 1157756823443195554136397711600, 3083952997773835021725260467500}, 20] (* Harvey P. Dale, Mar 24 2024 *)
CROSSREFS
Cf. A338948 (oriented), A338950 (chiral), A338951 (achiral), A338953 (edges, faces), A000389 (5-cell), A128767 (8-cell vertices, 16-cell facets), A337957 (16-cell vertices, 8-cell facets), A338965 (120-cell, 600-cell).
KEYWORD
nonn,easy
AUTHOR
Robert A. Russell, Nov 17 2020
STATUS
approved
Number of inequivalent n-colorings of the 4D hypercube under the full orthogonal group of the cube (of order 2^4*4! = 384).
+10
10
1, 402, 132102, 11756666, 405385550, 7416923886, 86986719477, 735192450952, 4834517667381, 26073250910950, 119759687845446, 481750080584202, 1733588303252702, 5673534527793146, 17109303241791825, 48047227408513056
OFFSET
1,2
COMMENTS
I assume this refers to colorings of the vertices of the cube. - N. J. A. Sloane, Apr 06 2007
Number of unoriented colorings of the 16 tetrahedral facets of a hyperoctahedron or of the 16 vertices of a tesseract (4-D cube) using up to n colors. Each chiral pair is counted as one when enumerating unoriented arrangements. The Schläfli symbols for the tesseract and the hyperoctahedron are {4,3,3} and {3,3,4} respectively. Both figures are regular 4-D polyhedra and they are mutually dual. - Robert A. Russell, Oct 03 2020
REFERENCES
Banks, D. C.; Linton, S. A. & Stockmeyer, P. K. Counting Cases in Substitope Algorithms. IEEE Transactions on Visualization and Computer Graphics, Vol. 10, No. 4, pp. 371-384. 2004.
Perez-Aguila, Ricardo. Enumerating the Configurations in the n-Dimensional Orthogonal Polytopes Through Polya's Counting and A Concise Representation. Proceedings of the 3rd International Conference on Electrical and Electronics Engineering and XII Conference on Electrical Engineering ICEEE and CIE 2006, pp. 63-66.
Polya, G. & Read R. C. Combinatorial Enumeration of Groups, Graphs and Chemical Compounds. Springer-Verlag, 1987.
LINKS
Banks, D. C.; Linton, S. A. & Stockmeyer, P. K., Counting Cases in Substitope Algorithms, IEEE Transactions on Visualization and Computer Graphics, Vol. 10, No. 4, pp. 371-384. 2004.
Perez-Aguila, Ricardo, Orthogonal Polytopes: Study and Application, PhD Thesis. Universidad de las Americas, Puebla. November, 2006.
Perez-Aguila, Ricardo, Enumerating the Configurations in the n-Dimensional Orthogonal Polytopes Through Polya's Counting and A Concise Representation, Proceedings of the 3rd International Conference on Electrical and Electronics Engineering and XII Conference on Electrical Engineering ICEEE and CIE 2006, pp. 63-66.
Index entries for linear recurrences with constant coefficients, signature (17,-136,680,-2380,6188,-12376,19448,-24310,24310,-19448,12376,-6188,2380,-680,136,-17,1).
FORMULA
a(n) = (1/384)*(48*n^2 + 180*n^4 + 48*n^6 + 83*n^8 + 12*n^10 + 12*n^12 + n^16)
G.f.: -x*(x +1)*(x^14 +384*x^13 +125020*x^12 +9439904*x^11 +213777216*x^10 +1821620108*x^9 +6527222787*x^8 +10098845160*x^7 +6527222787*x^6 +1821620108*x^5 +213777216*x^4 +9439904*x^3 +125020*x^2 +384*x +1) / (x -1)^17. [Colin Barker, Dec 04 2012]
From Robert A. Russell, Oct 03 2020: (Start)
a(n) = 1*C(n,1) + 400*C(n,2) + 130899*C(n,3) + 11230666*C(n,4) + 347919225*C(n,5) + 5158324560*C(n,6) + 43174480650*C(n,7) + 225086553300*C(n,8) + 775894225050*C(n,9) + 1831178115900*C(n,10) + 3008073915000*C(n,11) + 3439243962000*C(n,12) + 2685727044000*C(n,13) + 1366701336000*C(n,14) + 408648240000*C(n,15) + 54486432000*C(n,16), where the coefficient of C(n,k) is the number of unoriented colorings using exactly k colors.
a(n) = A337952(n) - A337954(n) = (A337952(n) + A337955(n)) / 2 = A337954(n) + A337955(n).
(End)
EXAMPLE
a(2)=402 because there are 402 inequivalent 2-colorings of the 4D hypercube.
MATHEMATICA
Table[(1/384)*( 48*n^2 + 180*n^4 + 48*n^6 + 83*n^8 + 12*n^10 + 12*n^12 + n^16), {n, 30}]
CROSSREFS
Cf. A337952 (oriented), A337954 (chiral), A337955 (achiral).
Other elements: A331359 (tesseract edges, hyperoctahedron faces), A331355 (tesseract faces, hyperoctahedron edges), A337957 (tesseract facets, hyperoctahedron vertices).
Other polychora: A000389(n+4) (4-simplex facets/vertices), A338949 (24-cell), A338965 (120-cell, 600-cell).
Row 4 of A325013 (orthoplex facets, orthotope vertices).
KEYWORD
nonn,easy
AUTHOR
Ricardo Perez-Aguila (ricardo.perez.aguila(AT)gmail.com), Apr 04 2007
STATUS
approved
Number of oriented colorings of the 8 cubic facets of a tesseract or of the 8 vertices of a hyperoctahedron.
+10
8
1, 15, 126, 730, 3270, 11991, 37450, 102726, 253485, 573265, 1205556, 2384460, 4475926, 8031765, 13858860, 23106196, 37372545, 58837851, 90421570, 135971430, 200486286, 290376955, 413769126, 580852650, 804281725
OFFSET
1,2
COMMENTS
Each chiral pair is counted as two when enumerating oriented arrangements. The Schläfli symbols for the tesseract and the hyperoctahedron are {4,3,3} and {3,3,4} respectively. Both figures are regular 4-D polyhedra and they are mutually dual.
FORMULA
a(n) = binomial(binomial(n+1,2)+3,4) + binomial(binomial(n,2),4).
a(n) = n * (n+1) * (n^6 - n^5 + 7*n^4 + 29*n^3 + 16*n^2 - 4*n + 48) / 192.
a(n) = 1*C(n,1) + 13*C(n,2) + 84*C(n,3) + 312*C(n,4) + 735*C(n,5) + 1020*C(n,6) + 735*C(n,7) + 210*C(n,8), where the coefficient of C(n,k) is the number of oriented colorings using exactly k colors.
a(n) = A337957(n) + A234249(n+1) = 2*A337957(n) - A337958(n) = 2*A234249(n+1) + A337958(n).
From Stefano Spezia, Oct 04 2020: (Start)
G.f.: x*(1 + 6*x + 27*x^2 + 52*x^3 + 102*x^4 + 21*x^5 + x^6)/(1 - x)^9.
a(n) = 9*a(n-1)-36*a(n-2)+84*a(n-3)-126*a(n-4)+126*a(n-5)-84*a(n-6)+36*a(n-7)-9*a(n-8)+a(n-8) for n > 8.
(End)
MATHEMATICA
Table[Binomial[Binomial[n+1, 2]+3, 4] + Binomial[Binomial[n, 2], 4], {n, 30}]
CROSSREFS
Cf. A337957 (unoriented), A234249(n+1) (chiral), A337958 (achiral).
Other elements: A331354 (hyperoctahedron edges, tesseract faces), A331358 (hyperoctahedron faces, tesseract edges), A337952 (hyperoctahedron facets, tesseract vertices).
Other polychora: A337895 (5-cell), A338948 (24-cell), A338964 (120-cell, 600-cell).
Row 4 of A325004 (orthotope facets, orthoplex vertices).
KEYWORD
nonn,easy
AUTHOR
Robert A. Russell, Oct 03 2020
STATUS
approved
Number of achiral colorings of the 8 cubic facets of a tesseract or of the 8 vertices of a hyperoctahedron.
+10
8
1, 15, 126, 700, 2850, 9261, 25480, 61776, 135675, 275275, 523446, 943020, 1623076, 2686425, 4298400, 6677056, 10104885, 14942151, 21641950, 30767100, 43008966, 59208325, 80378376, 107730000, 142699375, 186978051, 242545590
OFFSET
1,2
COMMENTS
An achiral coloring is identical to its reflection. The Schläfli symbols for the tesseract and the hyperoctahedron are {4,3,3} and {3,3,4} respectively. Both figures are regular 4-D polyhedra and they are mutually dual.
FORMULA
a(n) = binomial(binomial(n+1,2)+3,4) - binomial(binomial(n,2),4).
a(n) = n^2 * (n+1)^2 * (n+3) * (n^2 -2n +4) / 48.
a(n) = 1*C(n,1) + 13*C(n,2) + 84*C(n,3) + 282*C(n,4) + 465*C(n,5) + 360*C(n,6) + 105*C(n,7), where the coefficient of C(n,k) is the number of achiral colorings using exactly k colors.
a(n) = 2*A337957(n) - A337956(n) = A337956(n) - 2 * A234249(n+1) = A337957(n) - A234249(n+1).
From Stefano Spezia, Oct 04 2020: (Start)
G.f.: x*(1 + 7*x + 34*x^2 + 56*x^3 + 8*x^4 - x^5)/(1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n > 8.
(End)
MATHEMATICA
Table[Binomial[Binomial[n+1, 2]+3, 4] - Binomial[Binomial[n, 2], 4], {n, 30}]
CROSSREFS
Cf. A337956 (oriented), A337956 (unoriented), A234249(n+1) (chiral).
Other elements: A331357 (hyperoctahedron edges, tesseract faces), A331361 (hyperoctahedron faces, tesseract edges), A337955 (hyperoctahedron facets, tesseract vertices).
Other polychora: A132366(n-1) (5-cell), A338951 (24-cell), A338967 (120-cell, 600-cell).
Row 4 of A325007 (orthotope facets, orthoplex vertices).
KEYWORD
nonn,easy
AUTHOR
Robert A. Russell, Oct 03 2020
STATUS
approved
Number of unoriented colorings of the 120 dodecahedral facets of the 4-D 120-cell (or 120 vertices of the 4-D 600-cell) using exactly n colors.
+10
6
0, 1, 92307499707443390526727850063502, 124792381938502167392061689732085833655832902312754962, 122697712831831745940423467267565845711242845618544066030140191642464
OFFSET
0,3
COMMENTS
Each chiral pair is counted as one when enumerating unoriented arrangements. The Schläfli symbols of the 120-cell and 600-cell are {5,3,3} and {3,3,5} respectively. They are mutually dual. For n>120, a(n) = 0.
Sequences for other elements of the 120-cell and 600-cell are not suitable for the OEIS as the first significant datum is too big. We provide generating functions here using bp(j) = Sum_{k=1..j} k! * S2(j,k) * x^k.
For the 600 facets of the 600-cell (vertices of the 120-cell), the generating function is bp(20)/15 + bp(30)/10 + bp(40)/15 + bp(50)/12 + 43*bp(60)/300 + bp(66)/10 + bp(100)/360 + bp(104)/9 + bp(114)/12 + 13*bp(120)/300 + bp(150)/240 + bp(152)/8 + bp(200)/360 + bp(208)/36 + 61*bp(300)/14400 + bp(302)/32 + bp(330)/240 + bp(600)/14400.
For the 720 pentagonal faces of the 120-cell (edges of the 600-cell), the generating function is bp(24)/15 + bp(36)/10 + bp(48)/15 + bp(60)/12 + 7*bp(72)/300 + 3*bp(76)/25 + bp(84)/10 + 41*bp(120)/360 + bp(132)/12 + 7*bp(144)/300 + bp(152)/50 + bp(180)/240 + bp(182)/8 + 11*bp(240)/360 + 61*bp(360)/14400 + bp(364)/32 + bp(396)/240 + bp(720)/14400.
For the 1200 edges of the 120-cell (triangular faces of the 600-cell), the generating function is bp(40)/15 + bp(60)/10 + bp(80)/15 + bp(100)/12 + 43*bp(120)/300 + bp(128)/10 + bp(200)/360 + bp(202)/9 + bp(216)/12 + 13*bp(240)/300 + bp(300)/240 + bp(302)/8 + bp(400)/360 + bp(404)/36 + 61*bp(600)/14400 + bp(604)/32 + bp(640)/240 + bp(1200)/14400.
LINKS
FORMULA
A338965(n) = Sum_{j=1..Min(n,120)} a(n) * binomial(n,j).
a(n) = A338980(n) - A338982(n) = (A338980(n) + A338983(n)) / 2 = A338982(n) + A338983(n).
G.f.: bp(4)/15 + bp(6)/10 + bp(8)/15 + bp(10)/12 + 7bp(12)/300 + bp(16)/50 + bp(17)/10 + bp(19)/10 + bp(20)/360 + bp(22)/36 + bp(23)/12 + 7bp(24)/300 + bp(27)/12 + bp(30)/240 + bp(31)/8 + bp(32)/50 + bp(40)/360 + bp(44)/36 + bp(60)/14400 + bp(61)/240 + bp(62)/32 + bp(75)/240 + bp(120)/14400, where bp(j) = Sum_{k=1..j} k! * S2(j,k) * x^k and S2(j,k) is the Stirling subset number, A008277.
MATHEMATICA
bp[j_] := Sum[k! StirlingS2[j, k] x^k, {k, j}] (*binomial series*)
CoefficientList[bp[4]/15+bp[6]/10+bp[8]/15+bp[10]/12+7bp[12]/300+bp[16]/50+bp[17]/10+bp[19]/10+bp[20]/360+bp[22]/36+bp[23]/12+7bp[24]/300+bp[27]/12+bp[30]/240+bp[31]/8+bp[32]/50+bp[40]/360+bp[44]/36+bp[60]/14400+bp[61]/240+bp[62]/32+bp[75]/240+bp[120]/14400, x]
CROSSREFS
Cf. A338980 (oriented), A338982 (chiral), A338983 (achiral), A338965 (up to n colors), A000389 (5-cell), A128767 (8-cell vertices, 16-cell facets), A337957 (16-cell vertices, 8-cell facets), A338949 (24-cell).
KEYWORD
fini,nonn,easy
AUTHOR
Robert A. Russell, Dec 13 2020
STATUS
approved

Search completed in 0.013 seconds