[go: up one dir, main page]

login
Search: a316974 -id:a316974
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of non-isomorphic strict multiset partitions of weight n.
+10
104
1, 1, 3, 8, 23, 63, 197, 588, 1892, 6140, 20734, 71472, 254090, 923900, 3446572, 13149295, 51316445, 204556612, 832467052, 3455533022, 14621598811, 63023667027, 276559371189, 1234802595648, 5606647482646, 25875459311317, 121324797470067, 577692044073205
OFFSET
0,3
COMMENTS
Also the number of nonnegative integer n X n matrices with sum of elements equal to n, under row and column permutations, with no equal rows (or alternatively, with no equal columns).
Also the number of non-isomorphic multiset partitions of weight n with no equivalent vertices. In a multiset partition, two vertices are equivalent if in every block the multiplicity of the first is equal to the multiplicity of the second.
LINKS
FORMULA
Euler transform of A319557. - Gus Wiseman, Sep 23 2018
EXAMPLE
Non-isomorphic representatives of the a(3) = 8 multiset partitions with no equivalent vertices (first column) and with no equal blocks (second column):
(111) <-> (111)
(122) <-> (1)(11)
(1)(11) <-> (122)
(1)(22) <-> (1)(22)
(2)(12) <-> (2)(12)
(1)(1)(1) <-> (123)
(1)(2)(2) <-> (1)(23)
(1)(2)(3) <-> (1)(2)(3)
PROG
(PARI)
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
K(q, t, k)={EulerT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k))}
a(n)={if(n==0, 1, my(s=0); forpart(q=n, my(p=sum(t=1, n, subst(x*Ser(K(q, t, n\t))/t, x, x^t))); s+=permcount(q)*polcoef(exp(p-subst(p, x, x^2)), n)); s/n!)} \\ Andrew Howroyd, Jan 21 2023
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 18 2018
EXTENSIONS
a(7)-a(10) from Gus Wiseman, Sep 23 2018
Terms a(11) and beyond from Andrew Howroyd, Jan 19 2023
STATUS
approved
Number of non-isomorphic self-dual multiset partitions of weight n.
+10
103
1, 1, 2, 4, 9, 17, 36, 72, 155, 319, 677, 1429, 3094, 6648, 14518, 31796, 70491, 156818, 352371, 795952, 1813580, 4155367, 9594425, 22283566, 52122379, 122631874, 290432439, 691831161, 1658270316, 3997272089, 9692519896, 23631827354, 57943821449, 142834652193
OFFSET
0,3
COMMENTS
Also the number of nonnegative integer square symmetric matrices with sum of elements equal to n, under row and column permutations.
The dual of a multiset partition has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex, counted with multiplicity.
LINKS
EXAMPLE
Non-isomorphic representatives of the a(4) = 9 self-dual multiset partitions:
(1111),
(1)(222), (2)(122), (11)(22), (12)(12),
(1)(1)(23), (1)(2)(33), (1)(3)(23),
(1)(2)(3)(4).
The a(4) = 9 square symmetric matrices:
. [4]
.
. [3 0] [2 0] [2 1] [1 1]
. [0 1] [0 2] [1 0] [1 1]
.
. [2 0 0] [1 1 0] [0 1 1]
. [0 1 0] [1 0 0] [1 0 0]
. [0 0 1] [0 0 1] [1 0 0]
.
. [1 0 0 0]
. [0 1 0 0]
. [0 0 1 0]
. [0 0 0 1]
PROG
(PARI) vector(25, n, n--; T(n, n)) \\ T(n, k) defined in A318805. - Andrew Howroyd, Jan 16 2024
CROSSREFS
Row sums of A320796.
Main diagonal of A318805.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 18 2018
EXTENSIONS
Terms a(9) and beyond from Andrew Howroyd, Sep 03 2018
STATUS
approved
Number of symmetric polynomial functions of degree n of a symmetric matrix (of indefinitely large size) under joint row and column permutations. Also number of multigraphs with n edges (allowing loops) on an infinite set of nodes.
+10
83
1, 2, 7, 23, 79, 274, 1003, 3763, 14723, 59663, 250738, 1090608, 4905430, 22777420, 109040012, 537401702, 2723210617, 14170838544, 75639280146, 413692111521, 2316122210804, 13261980807830, 77598959094772, 463626704130058, 2826406013488180, 17569700716557737
OFFSET
0,2
COMMENTS
Euler transform of A007719.
Also the number of non-isomorphic multiset partitions of {1, 1, 2, 2, 3, 3, ..., n, n}. - Gus Wiseman, Jul 18 2018
Number of distinct n X 2n matrices with integer entries and rows sums 2, up to row and column permutations. - Andrew Howroyd, Sep 06 2018
a(n) is the number of unlabeled loopless multigraphs with n edges rooted at one vertex. - Andrew Howroyd, Nov 22 2020
REFERENCES
Huaien Li and David C. Torney, Enumerations of Multigraphs, 2002.
LINKS
Huaien Li and David C. Torney, Enumeration of unlabelled multigraphs, Ars Combin. 75 (2005) 171-188. MR2133219.
R. J. Mathar, Statistics on Small Graphs, arXiv:1709.09000 [math.CO] (2017) table 67.
EXAMPLE
a(2) = 7 (here - denotes an edge, = denotes a pair of parallel edges and o is a loop):
oo
o o
o-
o -
=
--
- -
From Gus Wiseman, Jul 18 2018: (Start)
Non-isomorphic representatives of the a(2) = 7 multiset partitions of {1, 1, 2, 2}:
(1122),
(1)(122), (11)(22), (12)(12),
(1)(1)(22), (1)(2)(12),
(1)(1)(2)(2).
(End)
From Gus Wiseman, Jan 08 2024: (Start)
Non-isomorphic representatives of the a(1) = 1 through a(3) = 7 rooted loopless multigraphs (root shown as singleton):
{{1}} {{1},{1,2}} {{1},{1,2},{1,2}}
{{1},{2,3}} {{1},{1,2},{1,3}}
{{1},{1,2},{2,3}}
{{1},{1,2},{3,4}}
{{1},{2,3},{2,3}}
{{1},{2,3},{2,4}}
{{1},{2,3},{4,5}}
(End)
MATHEMATICA
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t k; s += t]; s!/m];
Kq[q_, t_, k_] := SeriesCoefficient[1/Product[g = GCD[t, q[[j]]]; (1 - x^(q[[j]]/g))^g, {j, 1, Length[q]}], {x, 0, k}];
RowSumMats[n_, m_, k_] := Module[{s=0}, Do[s += permcount[q]* SeriesCoefficient[Exp[Sum[Kq[q, t, k]/t x^t, {t, 1, n}]], {x, 0, n}], {q, IntegerPartitions[m]}]; s/m!];
a[n_] := RowSumMats[n, 2n, 2];
Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 25}] (* Jean-François Alcover, Oct 27 2018, after Andrew Howroyd *)
PROG
(PARI) \\ See A318951 for RowSumMats
a(n)=RowSumMats(n, 2*n, 2); \\ Andrew Howroyd, Sep 06 2018
(PARI) \\ See A339065 for G.
seq(n)={my(A=O(x*x^n)); Vec(G(2*n, x+A, [1]))} \\ Andrew Howroyd, Nov 22 2020
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Vladeta Jovovic, Jan 26 2000
a(0)=1 prepended and a(16)-a(25) added by Max Alekseyev, Jun 21 2011
STATUS
approved
Number of loopless multigraphs on infinite set of nodes with n edges.
+10
46
1, 1, 3, 8, 23, 66, 212, 686, 2389, 8682, 33160, 132277, 550835, 2384411, 10709827, 49782637, 238998910, 1182772364, 6023860266, 31525780044, 169316000494, 932078457785, 5253664040426, 30290320077851, 178480713438362, 1073918172017297
OFFSET
0,3
COMMENTS
Also, a(n) is the number of n-rowed binary matrices with all row sums equal to 2, up to row and column permutation (see Jovovic's formula). Also, a(n) is the limit of A192517(m,n) as m grows. - Max Alekseyev, Oct 18 2017
Row sums of the triangle defined by the Multiset Transformation of A076864,
1 ;
0 1;
0 2 1;
0 5 2 1;
0 12 8 2 1;
0 33 22 8 2 1;
0 103 72 26 8 2 1;
0 333 229 87 26 8 2 1;
0 1183 782 295 92 26 8 2 1;
0 4442 2760 1036 315 92 26 8 2 1;
0 17576 10270 3735 1129 321 92 26 8 2 1;
0 72810 39770 13976 4117 1154 321 92 26 8 2 1;
0 314595 160713 54132 15547 4237 1161 321 92 26 8 2 1;
- R. J. Mathar, Jul 18 2017
Also the number of non-isomorphic set multipartitions (multisets of sets) of {1, 1, 2, 2, 3, 3, ..., n, n}. - Gus Wiseman, Jul 18 2018
REFERENCES
Frank Harary and Edgar M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 88, Eq. (4.1.18).
LINKS
George Barnes, Sanjaye Ramgoolam, and Michael Stephanou, Permutation invariant Gaussian matrix models for financial correlation matrices, arXiv:2306.04569 [q-fin.ST], 2023.
Frank Harary, The number of linear, directed, rooted, and connected graphs, Trans. Am. Math. Soc. 78 (1955) 445-463, eq. (24).
Patrick T. Komiske, Eric M. Metodiev, and Jesse Thaler, Energy flow polynomials: A complete linear basis for jet substructure, arXiv:1712.07124 [hep-ph], 2017.
Tsuyoshi Miezaki, Akihiro Munemasa, Yusaku Nishimura, Tadashi Sakuma, and Shuhei Tsujie, Universal graph series, chromatic functions, and their index theory, arXiv:2403.09985 [math.CO], 2024. See p. 23.
FORMULA
a(n) = A192517(2*n,n) = A192517(m,n) for any m>=2*n. - Max Alekseyev, Oct 18 2017
Euler transform of A076864. - Andrew Howroyd, Oct 23 2019
EXAMPLE
From Gus Wiseman, Jul 18 2018: (Start)
Non-isomorphic representatives of the a(3) = 8 set multipartitions of {1, 1, 2, 2, 3, 3}:
(123)(123)
(1)(23)(123)
(12)(13)(23)
(1)(1)(23)(23)
(1)(2)(3)(123)
(1)(2)(13)(23)
(1)(1)(2)(3)(23)
(1)(1)(2)(2)(3)(3)
(End)
MATHEMATICA
seq[n_] := G[2n, x+O[x]^n, {}] // CoefficientList[#, x]&;
seq[15] (* Jean-François Alcover, Dec 02 2020, using Andrew Howroyd's code for G in A339065 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Dec 29 1999
EXTENSIONS
More terms from Sean A. Irvine, Oct 02 2011
STATUS
approved
Number of factorizations of n into factors > 1 with no equivalent primes.
+10
29
1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 4, 1, 1, 1, 5, 1, 4, 1, 4, 1, 1, 1, 7, 2, 1, 3, 4, 1, 1, 1, 7, 1, 1, 1, 7, 1, 1, 1, 7, 1, 1, 1, 4, 4, 1, 1, 12, 2, 4, 1, 4, 1, 7, 1, 7, 1, 1, 1, 7, 1, 1, 4, 11, 1, 1, 1, 4, 1, 1, 1, 16, 1, 1, 4, 4, 1, 1, 1, 12, 5, 1, 1, 7, 1, 1
OFFSET
1,4
COMMENTS
In a factorization, two primes are equivalent if each factor has in its prime factorization the same multiplicity of both primes.
FORMULA
a(prime^n) = A000041(n).
a(squarefree) = 1.
EXAMPLE
The a(36) = 7 factorizations are (2*2*3*3), (2*2*9), (2*3*6), (3*3*4), (2*18), (3*12), (4*9). Missing from this list are (6*6) and (36).
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
dual[eds_]:=Table[First/@Position[eds, x], {x, Union@@eds}];
Table[Length[Select[facs[n], UnsameQ@@dual[primeMS/@#]&]], {n, 100}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 18 2018
STATUS
approved
Number of multigraphs on n labeled edges (with loops). Also number of genetically distinct states amongst n individuals.
+10
28
1, 2, 9, 66, 712, 10457, 198091, 4659138, 132315780, 4441561814, 173290498279, 7751828612725, 393110572846777, 22385579339430539, 1419799938299929267, 99593312799819072788, 7678949893962472351181, 647265784993486603555551, 59357523410046023899154274
OFFSET
0,2
COMMENTS
Also the number of factorizations of (p_n#)^2. - David W. Wilson, Apr 30 2001
Also the number of multiset partitions of {1, 1, 2, 2, 3, 3, ..., n, n}. - Gus Wiseman, Jul 18 2018
a(n) gives the number of genetically distinct states for n diploid individuals in the case that maternal and paternal alleles transmitted to the individuals are not distinguished (if maternal and paternal alleles are distinguished, then the number of states is A000110(2n)). - Noah A Rosenberg, Aug 23 2022
REFERENCES
D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778. - N. J. A. Sloane, Dec 30 2018
E. Keith Lloyd, Math. Proc. Camb. Phil. Soc., vol. 103 (1988), 277-284.
A. Murthy, Generalization of partition function, introducing Smarandache factor partitions. Smarandache Notions Journal, Vol. 11, No. 1-2-3, Spring 2000.
G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..310 (first 101 terms from Vincenzo Librandi)
G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004. [Cached copy, with permission]
E. A. Thompson, Gene identities and multiple relationships. Biometrics 30 (1974), 667-680. See Table 5.
FORMULA
Lloyd's article gives a complicated explicit formula.
E.g.f.: exp(-3/2 + exp(x)/2)*Sum_{n>=0} exp(binomial(n+1, 2)*x)/n! [probably in the Labelle paper]. - Vladeta Jovovic, Apr 27 2004
a(n) = A001055(A002110(n)^2). - Alois P. Heinz, Aug 23 2022
EXAMPLE
From Gus Wiseman, Jul 18 2018: (Start)
The a(2) = 9 multiset partitions of {1, 1, 2, 2}:
(1122),
(1)(122), (2)(112), (11)(22), (12)(12),
(1)(1)(22), (1)(2)(12), (2)(2)(11),
(1)(1)(2)(2).
(End)
MAPLE
B := n -> combinat[bell](n):
P := proc(m, n) local k; global B; option remember;
if n = 0 then B(m) else
(1/2)*( P(m+2, n-1) + P(m+1, n-1) + add( binomial(n-1, k)*P(m, k), k=0..n-1) ); fi; end;
r:=m->[seq(P(m, n), n=0..20)]; r(0); # N. J. A. Sloane, Dec 30 2018
MATHEMATICA
max = 16; s = Series[Exp[-3/2 + Exp[x]/2]*Sum[Exp[Binomial[n+1, 2]*x]/n!, {n, 0, 3*max }], {x, 0, max}] // Normal; a[n_] := SeriesCoefficient[s, {x, 0, n}]*n!; Table[a[n] // Round, {n, 0, max} ] (* Jean-François Alcover, Apr 23 2014, after Vladeta Jovovic *)
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
Table[Length[mps[Ceiling[Range[1/2, n, 1/2]]]], {n, 5}] (* Gus Wiseman, Jul 18 2018 *)
CROSSREFS
Row n=2 of A219727. - Alois P. Heinz, Nov 26 2012
See also A322764. Row 0 of the array in A322765.
Main diagonal of A346500.
KEYWORD
nonn
AUTHOR
Gilbert Labelle (gilbert(AT)lacim.uqam.ca), Simon Plouffe, N. J. A. Sloane
STATUS
approved
Number of (<=2)-covers of an n-set.
+10
19
1, 1, 5, 40, 457, 6995, 136771, 3299218, 95668354, 3268445951, 129468914524, 5868774803537, 301122189141524, 17327463910351045, 1109375488487304027, 78484513540137938209, 6098627708074641312182, 517736625823888411991202, 47791900951140948275632148
OFFSET
0,3
COMMENTS
Also the number of strict multiset partitions of {1, 1, 2, 2, 3, 3, ..., n, n}. For example, the a(2) = 5 strict multiset partitions of {1, 1, 2, 2} are (1122), (1)(122), (2)(112), (11)(22), (1)(2)(12). - Gus Wiseman, Jul 18 2018
LINKS
FORMULA
Row sums of A094573.
E.g.f: exp(-1-1/2*(exp(x)-1))*Sum(exp(x*binomial(n+1, 2))/n!, n=0..infinity) or exp((1-exp(x))/2)*Sum(A094577 (n)*(x/2)^n/n!, n=0..infinity).
EXAMPLE
From Gus Wiseman, Sep 02 2019: (Start)
These are set-systems covering {1..n} with vertex-degrees <= 2. For example, the a(3) = 40 covers are:
{123} {1}{23} {1}{2}{3} {1}{2}{3}{12}
{2}{13} {1}{2}{13} {1}{2}{3}{13}
{3}{12} {1}{2}{23} {1}{2}{3}{23}
{1}{123} {1}{3}{12} {1}{2}{13}{23}
{12}{13} {1}{3}{23} {1}{2}{3}{123}
{12}{23} {2}{3}{12} {1}{3}{12}{23}
{13}{23} {2}{3}{13} {2}{3}{12}{13}
{2}{123} {1}{12}{23}
{3}{123} {1}{13}{23}
{12}{123} {1}{2}{123}
{13}{123} {1}{3}{123}
{23}{123} {2}{12}{13}
{2}{13}{23}
{2}{3}{123}
{3}{12}{13}
{3}{12}{23}
{12}{13}{23}
{1}{23}{123}
{2}{13}{123}
{3}{12}{123}
(End)
MATHEMATICA
facs[n_]:=facs[n]=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Table[Length[Select[facs[Array[Prime, n, 1, Times]^2], UnsameQ@@#&]], {n, 0, 6}] (* Gus Wiseman, Jul 18 2018 *)
m = 20;
a094577[n_] := Sum[Binomial[n, k]*BellB[2 n - k], {k, 0, n}];
egf = Exp[(1 - Exp[x])/2]*Sum[a094577[n]*(x/2)^n/n!, {n, 0, m}] + O[x]^m;
CoefficientList[egf + O[x]^m, x]*Range[0, m-1]! (* Jean-François Alcover, May 13 2019 *)
CROSSREFS
Row n=2 of A219585. - Alois P. Heinz, Nov 23 2012
Dominated by A003465.
Graphs with vertex-degrees <= 2 are A136281.
Main diagonal of A346517.
KEYWORD
nonn
AUTHOR
Goran Kilibarda, Vladeta Jovovic, May 12 2004
STATUS
approved
Number of multigraphs on n labeled edges (without loops).
+10
14
1, 1, 3, 16, 139, 1750, 29388, 624889, 16255738, 504717929, 18353177160, 769917601384, 36803030137203, 1984024379014193, 119571835094300406, 7995677265437541258, 589356399302126773920, 47609742627231823142029, 4193665147256300117666879
OFFSET
0,3
COMMENTS
Or, number of bicoverings of an n-set.
Or, number of 2-covers of [1,...,n].
Also the number of set multipartitions (multisets of sets) of {1, 1, 2, 2, 3, 3, ..., n, n}. - Gus Wiseman, Jul 18 2018
REFERENCES
G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
LINKS
Peter Cameron, Thomas Prellberg, Dudley Stark, Asymptotic enumeration of 2-covers and line graphs, Discrete Math. 310 (2010), no. 2, 230-240 (see s_n).
L. Comtet, Birecouvrements et birevêtements d’un ensemble fini, Studia Sci. Math. Hungar 3 (1968): 137-152. [Annotated scanned copy. Warning: the table of v(n,k) has errors.]
G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004. [Cached copy, with permission]
FORMULA
E.g.f.: exp(-3/2+exp(x)/2)*Sum(exp(binomial(n, 2)*x)/n!, n=0..infinity) [Comtet]. - Vladeta Jovovic, Apr 27 2004
E.g.f. (an equivalent version in Maple format): G:=exp(-1+(exp(z)-1)/2)*sum(exp(s*(s-1)*z/2)/s!, s=0..infinity);
E.g.f.: exp((exp(x)-1)/2)*Sum(A020556(n)*(x/2)^n/n!, n=0..infinity). - Vladeta Jovovic, May 02 2004
Stirling_2 transform of A014500.
The e.g.f.'s of A020554 (S(x)) and A014500 (U(x)) are related by S(x) = U(e^x-1).
EXAMPLE
From Gus Wiseman, Jul 18 2018: (Start)
The a(3) = 16 set multipartitions of {1, 1, 2, 2, 3, 3}:
(123)(123)
(1)(23)(123) (2)(13)(123) (3)(12)(123) (12)(13)(23)
(1)(1)(23)(23) (1)(2)(3)(123) (1)(2)(13)(23) (1)(3)(12)(23) (2)(2)(13)(13) (2)(3)(12)(13) (3)(3)(12)(12)
(1)(1)(2)(3)(23) (1)(2)(2)(3)(13) (1)(2)(3)(3)(12)
(1)(1)(2)(2)(3)(3)
(End)
MATHEMATICA
Ceiling[ CoefficientList[ Series[ Exp[ -1 + (Exp[ z ] - 1)/2 ]Sum[ Exp[ s(s - 1)z/2 ]/s!, {s, 0, 21} ], {z, 0, 9} ], z ] Table[ n!, {n, 0, 9} ] ] (* Mitch Harris, May 01 2004 *)
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
Table[Length[Select[mps[Ceiling[Range[1/2, n, 1/2]]], And@@UnsameQ@@@#&]], {n, 5}] (* Gus Wiseman, Jul 18 2018 *)
CROSSREFS
KEYWORD
nonn,nice,easy
AUTHOR
Gilbert Labelle (gilbert(AT)lacim.uqam.ca), Simon Plouffe
STATUS
approved
Number of independent polynomial invariants of symmetric matrix of order n.
+10
12
1, 2, 4, 11, 30, 95, 328, 1211, 4779, 19902, 86682, 393072, 1847264, 8965027, 44814034, 230232789, 1213534723, 6552995689, 36207886517, 204499421849, 1179555353219, 6942908667578, 41673453738272, 254918441681030, 1588256152307002, 10073760672179505
OFFSET
0,2
COMMENTS
Also, number of connected multigraphs with n edges (allowing loops) and any number of nodes.
Also the number of non-isomorphic connected multiset partitions of {1, 1, 2, 2, 3, 3, ..., n, n}. - Gus Wiseman, Jul 18 2018
LINKS
R. J. Mathar, Statistics on Small Graphs, arXiv:1709.09000 [math.CO] (2017) Table 63.
FORMULA
Inverse Euler transform of A007717.
EXAMPLE
From Gus Wiseman, Jul 18 2018: (Start)
Non-isomorphic representatives of the a(3) = 11 connected multiset partitions of {1, 1, 2, 2, 3, 3}:
(112233),
(1)(12233), (12)(1233), (112)(233), (123)(123),
(1)(2)(1233), (1)(12)(233), (1)(23)(123), (12)(13)(23),
(1)(2)(3)(123), (1)(2)(13)(23).
(End)
MATHEMATICA
mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++,
c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {};
For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t k; s += t]; s!/m];
Kq[q_, t_, k_] := SeriesCoefficient[1/Product[g = GCD[t, q[[j]]]; (1 - x^(q[[j]]/g))^g, {j, 1, Length[q]}], {x, 0, k}];
RowSumMats[n_, m_, k_] := Module[{s = 0}, Do[s += permcount[q]* SeriesCoefficient[ Exp[Sum[Kq[q, t, k]/t x^t, {t, 1, n}]], {x, 0, n}], {q, IntegerPartitions[m]}]; s/m!];
A007717 = Table[Print[n]; RowSumMats[n, 2 n, 2], {n, 0, 20}];
Join[{1}, EULERi[Rest[A007717]]] (* Jean-François Alcover, Oct 29 2018, using Andrew Howroyd's code for A007717 *)
KEYWORD
nonn,nice
AUTHOR
EXTENSIONS
a(0)=1 added by Alberto Tacchella, Jun 20 2011
a(7)-a(25) from Franklin T. Adams-Watters, Jun 21 2011
STATUS
approved
Number of graphs with loops (symmetric relations) with n edges.
+10
12
1, 2, 5, 14, 38, 107, 318, 972, 3111, 10410, 36371, 132656, 504636, 1998361, 8224448, 35112342, 155211522, 709123787, 3342875421, 16234342515, 81102926848, 416244824068, 2192018373522, 11831511359378, 65387590986455, 369661585869273, 2135966349269550, 12604385044890628
OFFSET
0,2
COMMENTS
In a multiset partition, two vertices are equivalent if in every block the multiplicity of the first is equal to the multiplicity of the second. a(n) is the number of non-isomorphic multiset partitions of {1, 1, 2, 2, 3, 3, ..., n, n} with no equivalent vertices. For example, non-isomorphic representatives of the a(2) = 5 multiset partitions are (1)(122), (11)(22), (1)(1)(22), (1)(2)(12), (1)(1)(2)(2). - Gus Wiseman, Jul 18 2018
a(n) is the number of unlabeled simple graphs with n edges rooted at one vertex. - Andrew Howroyd, Nov 22 2020
LINKS
FORMULA
Euler transform of A191970. - Andrew Howroyd, Oct 22 2019
MATHEMATICA
seq[n_] := Module[{A = O[x]^n}, G[2n, x+A, {1}] // CoefficientList[#, x]&]; (* Jean-François Alcover, Dec 03 2020, using Andrew Howroyd's code for g.f. G in A339063 *)
PROG
(PARI) \\ See A339063 for G.
seq(n)={my(A=O(x*x^n)); Vec(G(2*n, x+A, [1]))} \\ Andrew Howroyd, Nov 22 2020
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Jan 10 2000
EXTENSIONS
a(16)-a(24) from Max Alekseyev, Jan 22 2010
Terms a(25) and beyond from Andrew Howroyd, Oct 22 2019
STATUS
approved

Search completed in 0.011 seconds