[go: up one dir, main page]

login
Search: a020554 -id:a020554
     Sort: relevance | references | number | modified | created      Format: long | short | data
Erroneous version of A020554.
(Formerly M3029 N1228)
+20
1
1, 3, 16, 139, 1750, 29388, 623909
OFFSET
1,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
L. Comtet, Birecouvrements et birevêtements d’un ensemble fini, Studia Sci. Math. Hungar 3 (1968): 137-152. [Annotated scanned copy. Warning: the table of v(n,k) has errors.]
KEYWORD
dead
AUTHOR
N. J. A. Sloane, Oct 20 2015
STATUS
approved
Number of oriented multigraphs on n labeled arcs (without loops).
+10
29
1, 1, 7, 87, 1657, 43833, 1515903, 65766991, 3473600465, 218310229201, 16035686850327, 1356791248984295, 130660110400259849, 14177605780945123273, 1718558016836289502159, 230999008481288064430879, 34208659263890939390952225, 5549763869122023099520756513
OFFSET
0,3
COMMENTS
Generalized Bell numbers: a(n) = Sum_{k=2..2*n} A078739(n,k), n >= 1.
Let B_{m}(x) = Sum_{j>=0} exp(j!/(j-m)!*x-1)/j! then
a(n) = n! [x^n] taylor(B_{2}(x)), where [x^n] denotes the coefficient of x^n in the Taylor series for B_{2}(x). a(n) is row 2 of the square array representation of A090210. - Peter Luschny, Mar 27 2011
Also the number of set partitions of {1,2,...,2n+1} such that the block |n+1| is a part but no block |m| with m < n+1. - Peter Luschny, Apr 03 2011
REFERENCES
G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
LINKS
P. Blasiak, K. A. Penson and A. I. Solomon, The Boson Normal Ordering Problem and Generalized Bell Numbers, arXiv:quant-ph/0212072, 2002.
P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
P. Codara, O. M. D'Antona, P. Hell, A simple combinatorial interpretation of certain generalized Bell and Stirling numbers, arXiv preprint arXiv:1308.1700 [cs.DM], 2013.
Peter Luschny, Set partitions
G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004. [Cached copy, with permission]
FORMULA
a(n) = e*Sum_{k>=0} ((k+2)!^n/(k+2)!)*(k!^n), n>=1.
a(n) = (1/e)*Sum_{k>=2} (k*(k-1))^n/k!, n >= 1. a(0) := 1. (From eq.(26) with r=2 of the Schork reference.)
E.g.f.: (1/e)*(2 + Sum_{k>=2} ((exp(k*(k-1)*x))/k!)) (from top of p. 4656 of the Schork reference).
a(n) = Sum_{k=0..n} (-1)^k*binomial(n, k)*Bell(2*n-k). - Vladeta Jovovic, May 02 2004
a(n) = A095149(2n,n). - Alois P. Heinz, Dec 20 2018
a(n) = A106436(2n,n) = A182930(2n+1,n+1). - Alois P. Heinz, Jan 29 2019
EXAMPLE
Example: For n = 2 the a(2) = 7 are the number of set partitions of 5 such that the block |3| is a part but no block |m| with m < 3: 3|1245, 3|4|125, 3|5|124, 3|12|45, 3|14|25, 3|15|24, 3|4|5|12. - Peter Luschny, Apr 05 2011
MAPLE
A020556 := proc(n) local k;
add((-1)^(n+k)*binomial(n, k)*combinat[bell](n+k), k=0..n) end:
seq(A020556(n), n=0..17); # Peter Luschny, Mar 27 2011
# Uses floating point arithmetic, increase working precision for large n.
A020556 := proc(n) local r, s, i;
if n=0 then 1 else r := [seq(3, i=1..n-1)]; s := [seq(1, i=1..n-1)];
exp(-x)*2^(n-1)*hypergeom(r, s, x); round(evalf(subs(x=1, %), 99)) fi end:
seq(A020556(n), n=0..15); # Peter Luschny, Mar 30 2011
T := proc(n, k) option remember;
if n = 1 then 1
elif n = k then T(n-1, 1) - T(n-1, n-1)
else T(n-1, k) + T(n, k+1) fi end:
A020556 := n -> T(2*n+1, n+1);
seq(A020556(n), n = 0..99); # Peter Luschny, Apr 03 2011
MATHEMATICA
f[n_] := f[n] = Sum[(k + 2)!^n/((k + 2)!*(k!^n)*E), {k, 0, Infinity}]; Table[ f[n], {n, 1, 16}]
(* Second program: *)
a[n_] := Sum[(-1)^k*Binomial[n, k]*BellB[2n-k], {k, 0, n}]; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Jul 11 2017, after Vladeta Jovovic *)
PROG
(PARI) a(n)={my(bell=serlaplace(exp(exp(x + O(x^(2*n+1)))-1))); sum(k=0, n, (-1)^k*binomial(n, k)*polcoef(bell, 2*n-k))} \\ Andrew Howroyd, Jan 13 2020
KEYWORD
nonn
AUTHOR
Gilbert Labelle (gilbert(AT)lacim.uqam.ca) and Simon Plouffe
EXTENSIONS
Edited by Robert G. Wilson v, Apr 30 2002
STATUS
approved
Number of multigraphs on n labeled edges (with loops). Also number of genetically distinct states amongst n individuals.
+10
28
1, 2, 9, 66, 712, 10457, 198091, 4659138, 132315780, 4441561814, 173290498279, 7751828612725, 393110572846777, 22385579339430539, 1419799938299929267, 99593312799819072788, 7678949893962472351181, 647265784993486603555551, 59357523410046023899154274
OFFSET
0,2
COMMENTS
Also the number of factorizations of (p_n#)^2. - David W. Wilson, Apr 30 2001
Also the number of multiset partitions of {1, 1, 2, 2, 3, 3, ..., n, n}. - Gus Wiseman, Jul 18 2018
a(n) gives the number of genetically distinct states for n diploid individuals in the case that maternal and paternal alleles transmitted to the individuals are not distinguished (if maternal and paternal alleles are distinguished, then the number of states is A000110(2n)). - Noah A Rosenberg, Aug 23 2022
REFERENCES
D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778. - N. J. A. Sloane, Dec 30 2018
E. Keith Lloyd, Math. Proc. Camb. Phil. Soc., vol. 103 (1988), 277-284.
A. Murthy, Generalization of partition function, introducing Smarandache factor partitions. Smarandache Notions Journal, Vol. 11, No. 1-2-3, Spring 2000.
G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..310 (first 101 terms from Vincenzo Librandi)
G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004. [Cached copy, with permission]
E. A. Thompson, Gene identities and multiple relationships. Biometrics 30 (1974), 667-680. See Table 5.
FORMULA
Lloyd's article gives a complicated explicit formula.
E.g.f.: exp(-3/2 + exp(x)/2)*Sum_{n>=0} exp(binomial(n+1, 2)*x)/n! [probably in the Labelle paper]. - Vladeta Jovovic, Apr 27 2004
a(n) = A001055(A002110(n)^2). - Alois P. Heinz, Aug 23 2022
EXAMPLE
From Gus Wiseman, Jul 18 2018: (Start)
The a(2) = 9 multiset partitions of {1, 1, 2, 2}:
(1122),
(1)(122), (2)(112), (11)(22), (12)(12),
(1)(1)(22), (1)(2)(12), (2)(2)(11),
(1)(1)(2)(2).
(End)
MAPLE
B := n -> combinat[bell](n):
P := proc(m, n) local k; global B; option remember;
if n = 0 then B(m) else
(1/2)*( P(m+2, n-1) + P(m+1, n-1) + add( binomial(n-1, k)*P(m, k), k=0..n-1) ); fi; end;
r:=m->[seq(P(m, n), n=0..20)]; r(0); # N. J. A. Sloane, Dec 30 2018
MATHEMATICA
max = 16; s = Series[Exp[-3/2 + Exp[x]/2]*Sum[Exp[Binomial[n+1, 2]*x]/n!, {n, 0, 3*max }], {x, 0, max}] // Normal; a[n_] := SeriesCoefficient[s, {x, 0, n}]*n!; Table[a[n] // Round, {n, 0, max} ] (* Jean-François Alcover, Apr 23 2014, after Vladeta Jovovic *)
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
Table[Length[mps[Ceiling[Range[1/2, n, 1/2]]]], {n, 5}] (* Gus Wiseman, Jul 18 2018 *)
CROSSREFS
Row n=2 of A219727. - Alois P. Heinz, Nov 26 2012
See also A322764. Row 0 of the array in A322765.
Main diagonal of A346500.
KEYWORD
nonn
AUTHOR
Gilbert Labelle (gilbert(AT)lacim.uqam.ca), Simon Plouffe, N. J. A. Sloane
STATUS
approved
Number of bicoverings of an n-set.
(Formerly M4559 N1941)
+10
24
1, 0, 1, 8, 80, 1088, 19232, 424400, 11361786, 361058000, 13386003873, 570886397340, 27681861184474, 1511143062540976, 92091641176725504, 6219762391554815200, 462595509951068027741, 37676170944802047077248, 3343539821715571537772071, 321874499078487207168905840
OFFSET
0,4
COMMENTS
Another description: number of proper 2-covers of [1,...,n].
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 303, #40.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Peter Cameron, Thomas Prellberg, Dudley Stark, Asymptotic enumeration of 2-covers and line graphs, Discrete Math. 310 (2010), no. 2, 230-240 (see t_n).
L. Comtet, Birecouvrements et birevêtements d’un ensemble fini, Studia Sci. Math. Hungar 3 (1968): 137-152. [Annotated scanned copy. Warning: the table of v(n,k) has errors.]
FORMULA
E.g.f. for k-block bicoverings of an n-set is exp(-x-1/2*x^2*(exp(y)-1))*Sum_{i=0..inf} x^i/i!*exp(binomial(i, 2)*y).
Stirling_2 transform of A060053.
The e.g.f.'s of A002718 (T(x)) and A060053 (V(x)) are related by T(x) = V(e^x-1).
a(n) = Sum_{m=0..n + floor(n/2); k=0..n; s=0..min(m/2,k); t=0..m-2s} Stirling2(n,k) * k!/m! * binomial(m,2s) * A001147(s) * (-1)^(m+s+t) * binomial(m-2s,t) * binomial(t*(t-1)/2,k-s). Interpret m as the number of blocks in a bicovering, k the number of clumps of points that are always all together in blocks. This formula counts bicoverings by quotienting them to the clumpless case (an operation which preserves degree) and counting incidence matrices of those, and counts those matrices as the transposes of incidence matrices of labeled graphs with no isolated points and no isolated edges. - David Pasino, Jul 09 2016
EXAMPLE
For n=3, there are 8 collections of distinct subsets of {1,2,3} with the property that each of 1, 2, and 3 appears in exactly two subsets:
{1,2,3},{1,2},{3}
{1,2,3},{1,3},{2}
{1,2,3},{2,3},{1}
{1,2,3},{1},{2},{3}
{1,2},{1,3},{2,3}
{1,2},{1,3},{2},{3}
{1,2},{2,3},{1},{3}
{1,3},{2,3},{1},{2}
Therefore a(3) = 8. - Michael B. Porter, Jul 16 2016
MATHEMATICA
nmax = 16; imax = 2*(nmax - 2); egf := E^(-x - 1/2*x^2*(E^y - 1))*Sum[(x^i/i!)*E^(Binomial[i, 2]*y), {i, 0, imax}]; fx = CoefficientList[Series[egf, {y, 0, imax}], y]*Range[0, imax]!; a[n_] := Drop[ CoefficientList[ Series[fx[[n + 1]], {x, 0, imax}], x], 3] // Total; Table[ a[n] , {n, 2, nmax}] (* Jean-François Alcover, Apr 04 2013 *)
CROSSREFS
KEYWORD
nonn,nice
EXTENSIONS
More terms from Vladeta Jovovic, Feb 18 2001
a(0), a(1) prepended by Alois P. Heinz, Jul 29 2016
STATUS
approved
Number of graphs with unlabeled (non-isolated) nodes and n labeled edges.
+10
20
1, 1, 2, 9, 70, 794, 12055, 233238, 5556725, 158931613, 5350854707, 208746406117, 9315261027289, 470405726166241, 26636882237942128, 1678097862705130667, 116818375064650241036, 8932347052564257212796, 746244486452472386213939, 67796741482683128375533560
OFFSET
0,3
REFERENCES
G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
LINKS
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
Peter Cameron, Thomas Prellberg, Dudley Stark, Asymptotic enumeration of 2-covers and line graphs, Discrete Math. 310 (2010), no. 2, 230-240 (see u_n).
G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004. [Cached copy, with permission]
FORMULA
E.g.f.: exp(-1+x/2)*Sum((1+x)^binomial(n, 2)/n!, n=0..infinity) [probably in the Labelle paper]. - Vladeta Jovovic, Apr 27 2004
E.g.f.: exp(x/2)*Sum(A020556(n)*(log(1+x)/2)^n/n!, n=0..infinity). - Vladeta Jovovic, May 02 2004
Binomial transform of A060053.
The e.g.f.'s of A020554 (S(x)) and A014500 (U(x)) are related by S(x) = U(e^x-1).
The e.g.f.'s of A014500 (U(x)) and A060053 (V(x)) are related by U(x) = e^x*V(x).
MAPLE
read("transforms") ;
A020556 := proc(n) local k; add((-1)^(n+k)*binomial(n, k)*combinat[bell](n+k), k=0..n) end proc:
A014500 := proc(n) local i, gexp, lexp;
gexp := [seq(1/2^i/i!, i=0..n+1)] ;
lexp := add( A020556(i)*((log(1+x))/2)^i/i!, i=0..n+1) ;
lexp := taylor(lexp, x=0, n+1) ;
lexp := gfun[seriestolist](lexp, 'ogf') ;
CONV(gexp, lexp) ; op(n+1, %)*n! ; end proc:
seq(A014500(n), n=0..20) ; # R. J. Mathar, Jul 03 2011
MATHEMATICA
max = 20; A020556[n_] := Sum[(-1)^(n+k)*Binomial[n, k]*BellB[n+k], {k, 0, n}]; egf = Exp[x/2]*Sum[A020556[n]*(Log[1+x]/2)^n/n!, {n, 0, max}] + O[x]^max; CoefficientList[egf, x]*Range[0, max-1]! (* Jean-François Alcover, Feb 19 2017, after Vladeta Jovovic *)
PROG
(PARI) \\ here egf1 is A020556 as e.g.f.
egf1(n)={my(bell=serlaplace(exp(exp(x + O(x^(2*n+1)))-1))); sum(i=0, n, sum(k=0, i, (-1)^k*binomial(i, k)*polcoef(bell, 2*i-k))*x^i/i!) + O(x*x^n)}
seq(n)={my(B=egf1(n), L=log(1+x + O(x*x^n))/2); Vec(serlaplace(exp(x/2 + O(x*x^n))*sum(k=0, n, polcoef(B , k)*L^k)))} \\ Andrew Howroyd, Jan 13 2020
CROSSREFS
Row n=2 of A331126.
KEYWORD
nonn
AUTHOR
Simon Plouffe, Gilbert Labelle (gilbert(AT)lacim.uqam.ca)
STATUS
approved
Number of (<=2)-covers of an n-set.
+10
19
1, 1, 5, 40, 457, 6995, 136771, 3299218, 95668354, 3268445951, 129468914524, 5868774803537, 301122189141524, 17327463910351045, 1109375488487304027, 78484513540137938209, 6098627708074641312182, 517736625823888411991202, 47791900951140948275632148
OFFSET
0,3
COMMENTS
Also the number of strict multiset partitions of {1, 1, 2, 2, 3, 3, ..., n, n}. For example, the a(2) = 5 strict multiset partitions of {1, 1, 2, 2} are (1122), (1)(122), (2)(112), (11)(22), (1)(2)(12). - Gus Wiseman, Jul 18 2018
LINKS
FORMULA
Row sums of A094573.
E.g.f: exp(-1-1/2*(exp(x)-1))*Sum(exp(x*binomial(n+1, 2))/n!, n=0..infinity) or exp((1-exp(x))/2)*Sum(A094577 (n)*(x/2)^n/n!, n=0..infinity).
EXAMPLE
From Gus Wiseman, Sep 02 2019: (Start)
These are set-systems covering {1..n} with vertex-degrees <= 2. For example, the a(3) = 40 covers are:
{123} {1}{23} {1}{2}{3} {1}{2}{3}{12}
{2}{13} {1}{2}{13} {1}{2}{3}{13}
{3}{12} {1}{2}{23} {1}{2}{3}{23}
{1}{123} {1}{3}{12} {1}{2}{13}{23}
{12}{13} {1}{3}{23} {1}{2}{3}{123}
{12}{23} {2}{3}{12} {1}{3}{12}{23}
{13}{23} {2}{3}{13} {2}{3}{12}{13}
{2}{123} {1}{12}{23}
{3}{123} {1}{13}{23}
{12}{123} {1}{2}{123}
{13}{123} {1}{3}{123}
{23}{123} {2}{12}{13}
{2}{13}{23}
{2}{3}{123}
{3}{12}{13}
{3}{12}{23}
{12}{13}{23}
{1}{23}{123}
{2}{13}{123}
{3}{12}{123}
(End)
MATHEMATICA
facs[n_]:=facs[n]=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Table[Length[Select[facs[Array[Prime, n, 1, Times]^2], UnsameQ@@#&]], {n, 0, 6}] (* Gus Wiseman, Jul 18 2018 *)
m = 20;
a094577[n_] := Sum[Binomial[n, k]*BellB[2 n - k], {k, 0, n}];
egf = Exp[(1 - Exp[x])/2]*Sum[a094577[n]*(x/2)^n/n!, {n, 0, m}] + O[x]^m;
CoefficientList[egf + O[x]^m, x]*Range[0, m-1]! (* Jean-François Alcover, May 13 2019 *)
CROSSREFS
Row n=2 of A219585. - Alois P. Heinz, Nov 23 2012
Dominated by A003465.
Graphs with vertex-degrees <= 2 are A136281.
Main diagonal of A346517.
KEYWORD
nonn
AUTHOR
Goran Kilibarda, Vladeta Jovovic, May 12 2004
STATUS
approved
T(n,k) = number of (n*k) X k binary arrays with rows in nonincreasing order and n ones in every column.
+10
19
1, 2, 1, 5, 3, 1, 15, 16, 4, 1, 52, 139, 39, 5, 1, 203, 1750, 862, 81, 6, 1, 877, 29388, 35775, 4079, 150, 7, 1, 4140, 624889, 2406208, 507549, 15791, 256, 8, 1, 21147, 16255738, 238773109, 127126912, 5442547, 52450, 410, 9, 1, 115975, 504717929, 32867762616
OFFSET
1,2
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..181 (terms 1..69 from R. H. Hardin)
EXAMPLE
Array begins:
========================================================================
n\k| 1 2 3 4 5 6 7 8
---+--------------------------------------------------------------------
1 | 1 2 5 15 52 203 877 4140
2 | 1 3 16 139 1750 29388 624889 16255738
3 | 1 4 39 862 35775 2406208 238773109 32867762616
4 | 1 5 81 4079 507549 127126912 55643064708 38715666455777
5 | 1 6 150 15791 5442547 4762077620 8738543204786
6 | 1 7 256 52450 46757209 135029200594
7 | 1 8 410 154279 335279744
8 | 1 9 625 411180
9 | 1 10 915
...
All solutions for 6 X 2
..1..1....1..1....1..0....1..1
..1..1....1..1....1..0....1..0
..1..0....1..1....1..0....1..0
..0..1....0..0....0..1....0..1
..0..0....0..0....0..1....0..1
..0..0....0..0....0..1....0..0
PROG
(PARI)
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); WeighT(v)[n]^k/prod(i=1, #v, i^v[i]*v[i]!)}
T(n, k)={my(m=n*k, q=Vec(exp(O(x*x^m) + intformal((x^n-1)/(1-x)))/(1-x))); if(n==0, 1, sum(j=0, m, my(s=0); forpart(p=j, s+=D(p, n, k), [1, n]); s*q[#q-j]))} \\ Andrew Howroyd, Dec 12 2018
CROSSREFS
Columns 3..7 are A011863(n+1), A175707, A188389, A188390, A188391.
Main diagonal gives A188388.
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Mar 30 2011
STATUS
approved
Number of non-isomorphic strict multiset partitions of {1, 1, 2, 2, 3, 3, ..., n, n}.
+10
15
1, 1, 4, 14, 49, 173, 652, 2494
OFFSET
0,3
COMMENTS
Also the number of unlabeled multigraphs with n edges, allowing loops, spanning an initial interval of positive integers with no equivalent vertices (two vertices are equivalent if in every edge the multiplicity of the first is equal to the multiplicity of the second). For example, non-isomorphic representatives of the a(2) = 4 multigraphs are {(1,2),(1,3)}, {(1,1),(1,2)}, {(1,1),(2,2)}, {(1,1),(1,1)}.
EXAMPLE
Non-isomorphic representatives of the a(3) = 14 strict multiset partitions:
(112233),
(1)(12233), (11)(2233), (12)(1233), (112)(233),
(1)(2)(1233), (1)(12)(233), (1)(23)(123), (2)(11)(233), (11)(22)(33), (12)(13)(23),
(1)(2)(3)(123), (1)(2)(12)(33), (1)(2)(13)(23).
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Jul 17 2018
EXTENSIONS
a(7) from Andrew Howroyd, Feb 07 2020
STATUS
approved
Number of tri-coverings of a set.
+10
9
1, 1, 4, 39, 862, 35775, 2406208, 238773109, 32867762616, 6009498859909, 1412846181645855, 416415343791239162, 150747204270574506888, 65905473934553360340713, 34305461329980340135062217, 21003556204331356488142290707, 14967168378184553824642693791437
OFFSET
0,3
LINKS
E. A. Bender, Partitions of multisets, Discrete Mathematics 9 (1974) 301-312.
J. S. Devitt and D. M. Jackson, The enumeration of covers of a finite set, J. London Math. Soc.(2) 25 (1982), 1-6.
Doron Zeilberger, In How Many Ways Can You Reassemble Several Russian Dolls?, has links to more terms and related sequences
Doron Zeilberger, In How Many Ways Can You Reassemble Several Russian Dolls?, arXiv:0909.3453 [math.CO], 2009.
Doron Zeilberger, BABUSHKAS; Local copy
EXAMPLE
For n=2, a(2)=4, since if you have two sets of identical triples the A-brothers and the B-sisters, and you want to arrange them into a multiset of nonempty sets, where no one is allowed to cohabitate with his or her sibling, the following are possible 1.{{AB},{AB},{AB}} 2.{{AB},{AB},{A},{B}} 3.{{AB},{A},{A},{B},{B}} 4.{{A},{A},{A},{B},{B},{B}}.
MAPLE
Do SeqBrn(3, n); in the Maple package BABUSHKAS (see links) where n+1 is the number of desired terms.
CROSSREFS
Row 3 of A188392.
Cf. A000110 (unicoverings), A020554 (bicoverings).
KEYWORD
nonn
AUTHOR
Doron Zeilberger, Sep 18 2009
EXTENSIONS
Edited by Charles R Greathouse IV, Oct 28 2009
STATUS
approved
Number of graphs with loops, having unlabeled (non-isolated) nodes and n labeled edges.
+10
5
1, 2, 7, 43, 403, 5245, 89132, 1898630, 49209846, 1517275859, 54669946851, 2269075206395, 107199678164289, 5707320919486026, 339510756324234931, 22400182888853554291, 1628654713107465602783, 129754625253841669625051
OFFSET
0,2
REFERENCES
G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
LINKS
G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004. [Cached copy, with permission]
FORMULA
E.g.f.: exp(-1+x/2)*Sum((1+x)^binomial(n+1, 2)/n!, n=0..infinity) [probably in the Labelle paper]. - Vladeta Jovovic, Apr 27 2004
CROSSREFS
Row n=2 of A331161.
KEYWORD
nonn
AUTHOR
Simon Plouffe, Gilbert Labelle (gilbert(AT)lacim.uqam.ca).
STATUS
approved

Search completed in 0.077 seconds