[go: up one dir, main page]

login
Search: a316980 -id:a316980
     Sort: relevance | references | number | modified | created      Format: long | short | data
Functional determinants; partitions of partitions; Euler transform applied twice to all 1's sequence.
(Formerly M2576 N1019)
+10
228
1, 1, 3, 6, 14, 27, 58, 111, 223, 424, 817, 1527, 2870, 5279, 9710, 17622, 31877, 57100, 101887, 180406, 318106, 557453, 972796, 1688797, 2920123, 5026410, 8619551, 14722230, 25057499, 42494975, 71832114, 121024876, 203286806, 340435588, 568496753, 946695386
OFFSET
0,3
COMMENTS
a(n) = number of partitions of n, when for each k there are p(k) different copies of part k. E.g., let the parts be 1, 2a, 2b, 3a, 3b, 3c, 4a, 4b, 4c, 4d, 4e, ... Then the a(4) = 14 partitions of 4 are: 4 = 4a = 4b = ... = 4e = 3a+1 = 3b+1 = 3c+1 = 2a+2a = 2a+2b = 2b+2b = 2a+1 = 2b+1 = 1+1+1+1.
Equivalently (Cayley), a(n) = number of 2-dimensional partitions of n. E.g., for n = 4 we have:
4 31 3 22 2 211 21 2 2 1111 111 11 11 1
1 2 1 11 1 1 11 1 1
1 1 1
1
Also total number of different species of singularity for conjugate functions with n letters (Sylvester).
According to [Belmans], this sequence gives "[t]he number of Segre symbols for the intersection of two quadrics in a fixed dimension". - Eric M. Schmidt, Sep 02 2017
From Gus Wiseman, Jul 30 2022: (Start)
Also the number of non-isomorphic multiset partitions of weight n with all constant blocks. The strict case is A089259. For example, non-isomorphic representatives of the a(1) = 1 through a(3) = 6 multiset partitions are:
{{1}} {{1,1}} {{1,1,1}}
{{1},{1}} {{1},{1,1}}
{{1},{2}} {{1},{2,2}}
{{1},{1},{1}}
{{1},{2},{2}}
{{1},{2},{3}}
A000688 counts factorizations into prime powers.
A007716 counts non-isomorphic multiset partitions by weight.
A279784 counts twice-partitions of type PPR, factorizations A295935.
Constant partitions are ranked by prime-powers: A000961, A023894, A054685, A246655, A355743.
(End)
REFERENCES
A. Cayley, Recherches sur les matrices dont les termes sont des fonctions linéaires d'une seule indéterminée, J. Reine angew. Math., 50 (1855), 313-317; Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, p. 219.
V. A. Liskovets, Counting rooted initially connected directed graphs. Vesci Akad. Nauk. BSSR, ser. fiz.-mat., No 5, 23-32 (1969), MR44 #3927.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
J. J. Sylvester, An Enumeration of the Contacts of Lines and Surfaces of the Second Order, Phil. Mag. 1 (1851), 119-140. Reprinted in Collected Papers, Vol. 1. See p. 239, where one finds a(n)-2, but with errors.
J. J. Sylvester, Note on the 'Enumeration of the Contacts of Lines and Surfaces of the Second Order', Phil. Mag., Vol. VII (1854), pp. 331-334. Reprinted in Collected Papers, Vol. 2, pp. 30-33.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..5000 (first 500 terms from T. D. Noe)
Pieter Belmans, Segre symbols, 2016.
P. J. Cameron, Some sequences of integers, Discrete Math., 75 (1989), 89-102; also in "Graph Theory and Combinatorics 1988", ed. B. Bollobas, Annals of Discrete Math., 43 (1989), 89-102.
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
R. Kaneiwa, An asymptotic formula for Cayley's double partition function p(2; n), Tokyo J. Math. 2, 137-158 (1979).
L. Kaylor and D. Offner, Counting matrices over a finite field with all eigenvalues in the field, Involve, a Journal of Mathematics, Vol. 7 (2014), No. 5, 627-645. [DOI]
M. Kozek, F. Luca, P. Pollack, and C. Pomerance, Harmonious pairs, 2014.
M. Kozek, F. Luca, P. Pollack, and C. Pomerance, Harmonious numbers, IJNT, to appear.
XiKun Li, JunLi Li, Bin Liu and CongFeng Qiao, The parametric symmetry and numbers of the entangled class of 2 × M × N system, Science China Physics, Mechanics & Astronomy, Volume 54, Number 8, 1471-1475, DOI: 10.1007/s11433-011-4395-9.
Paul Pollack and Carl Pomerance, Some problems of Erdős on the sum-of-divisors function, For Richard Guy on his 99th birthday: May his sequence be unbounded, Trans. Amer. Math. Soc. Ser. B, Vol. 3 (2016), pp. 1-26; Errata.
N. J. A. Sloane, Transforms.
N. J. A. Sloane and Thomas Wieder, The Number of Hierarchical Orderings, Order 21 (2004), 83-89.
J. J. Sylvester, The collected mathematical papers of James Joseph Sylvester, vol. 2, vol. 3, vol. 4.
FORMULA
G.f.: Product_{k >= 1} 1/(1-x^k)^p(k), where p(k) = number of partitions of k = A000041. [Cayley]
a(n) = (1/n)*Sum_{k = 1..n} a(n-k)*b(k), n > 1, a(0) = 1, b(k) = Sum_{d|k} d*numbpart(d), where numbpart(d) = number of partitions of d, cf. A061259. - Vladeta Jovovic, Apr 21 2001
Logarithmic derivative yields A061259 (equivalent to above formula from Vladeta Jovovic). - Paul D. Hanna, Sep 05 2012
a(n) = Sum_{k=1..A000041(n)} A001055(A215366(n,k)) = number of factorizations of Heinz numbers of integer partitions of n. - Gus Wiseman, Dec 19 2016
a(n) = |{m>=1 : n = Sum_{k=1..A001222(m)} A056239(A112798(m,k)+1)}| = number of normalized twice-prime-factored multiset partitions (see A275024) whose total sum of parts is n. - Gus Wiseman, Dec 19 2016
EXAMPLE
G.f. = 1 + x + 3*x^2 + 6*x^3 + 15*x^4 + 28*x^5 + 66*x^6 + 122*x^7 + ...
a(3) = 6 because we have (111) = (111) = (11)(1) = (1)(1)(1), (12) = (12) = (1)(2), (3) = (3).
The a(4)=14 multiset partitions whose total sum of parts is 4 are:
((4)),
((13)), ((1)(3)),
((22)), ((2)(2)),
((112)), ((1)(12)), ((2)(11)), ((1)(1)(2)),
((1111)), ((1)(111)), ((11)(11)), ((1)(1)(11)), ((1)(1)(1)(1)). - Gus Wiseman, Dec 19 2016
MAPLE
with(combstruct); SetSetSetU := [T, {T=Set(S), S=Set(U, card >= 1), U=Set(Z, card >=1)}, unlabeled];
# second Maple program:
with(numtheory): with(combinat):
a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
numbpart(d), d=divisors(j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..35); # Alois P. Heinz, Dec 19 2016
MATHEMATICA
m = 32; f[x_] = Product[1/(1-x^k)^PartitionsP[k], {k, 1, m}]; CoefficientList[ Series[f[x], {x, 0, m-1}], x] (* Jean-François Alcover, Jul 19 2011, after g.f. *)
PROG
(Haskell) Following Vladeta Jovovic:
a001970 n = a001970_list !! (n-1)
a001970_list = 1 : f 1 [1] where
f x ys = y : f (x + 1) (y : ys) where
y = sum (zipWith (*) ys a061259_list) `div` x
-- Reinhard Zumkeller, Oct 31 2015
(PARI) {a(n) = if( n<0, 0, polcoeff( 1 / prod(k=1, n, 1 - numbpart(k) * x^k + x * O(x^n)), n))}; /* Michael Somos, Dec 20 2016 */
(Python)
from sympy.core.cache import cacheit
from sympy import npartitions, divisors
@cacheit
def a(n): return 1 if n == 0 else sum([sum([d*npartitions(d) for d in divisors(j)])*a(n - j) for j in range(1, n + 1)]) / n
[a(n) for n in range(51)] # Indranil Ghosh, Aug 19 2017, after Maple code
# (Sage) # uses[EulerTransform from A166861]
b = BinaryRecurrenceSequence(0, 1, 1)
a = EulerTransform(EulerTransform(b))
print([a(n) for n in range(36)]) # Peter Luschny, Nov 17 2022
CROSSREFS
Related to A001383 via generating function.
The multiplicative version (factorizations) is A050336.
The ordered version (sequences of partitions) is A055887.
Row-sums of A061260.
Main diagonal of A055885.
We have A271619(n) <= a(n) <= A063834(n).
Column k=3 of A290353.
The strict case is A316980.
Cf. A089300.
KEYWORD
nonn,nice,easy
EXTENSIONS
Additional comments from Valery A. Liskovets
Sylvester references from Barry Cipra, Oct 07 2003
STATUS
approved
Number of non-isomorphic self-dual multiset partitions of weight n.
+10
103
1, 1, 2, 4, 9, 17, 36, 72, 155, 319, 677, 1429, 3094, 6648, 14518, 31796, 70491, 156818, 352371, 795952, 1813580, 4155367, 9594425, 22283566, 52122379, 122631874, 290432439, 691831161, 1658270316, 3997272089, 9692519896, 23631827354, 57943821449, 142834652193
OFFSET
0,3
COMMENTS
Also the number of nonnegative integer square symmetric matrices with sum of elements equal to n, under row and column permutations.
The dual of a multiset partition has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex, counted with multiplicity.
LINKS
EXAMPLE
Non-isomorphic representatives of the a(4) = 9 self-dual multiset partitions:
(1111),
(1)(222), (2)(122), (11)(22), (12)(12),
(1)(1)(23), (1)(2)(33), (1)(3)(23),
(1)(2)(3)(4).
The a(4) = 9 square symmetric matrices:
. [4]
.
. [3 0] [2 0] [2 1] [1 1]
. [0 1] [0 2] [1 0] [1 1]
.
. [2 0 0] [1 1 0] [0 1 1]
. [0 1 0] [1 0 0] [1 0 0]
. [0 0 1] [0 0 1] [1 0 0]
.
. [1 0 0 0]
. [0 1 0 0]
. [0 0 1 0]
. [0 0 0 1]
PROG
(PARI) vector(25, n, n--; T(n, n)) \\ T(n, k) defined in A318805. - Andrew Howroyd, Jan 16 2024
CROSSREFS
Row sums of A320796.
Main diagonal of A318805.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 18 2018
EXTENSIONS
Terms a(9) and beyond from Andrew Howroyd, Sep 03 2018
STATUS
approved
Number of non-isomorphic square multiset partitions of weight n.
+10
99
1, 1, 2, 4, 11, 27, 80, 230, 719, 2271, 7519, 25425, 88868, 317972, 1168360, 4392724, 16903393, 66463148, 266897917, 1093550522, 4568688612, 19448642187, 84308851083, 371950915996, 1669146381915, 7615141902820, 35304535554923, 166248356878549, 794832704948402, 3856672543264073, 18984761300310500
OFFSET
0,3
COMMENTS
A multiset partition or hypergraph is square if its length (number of blocks or edges) is equal to its number of vertices.
Also the number of square integer matrices with entries summing to n and no empty rows or columns, up to permutation of rows and columns.
LINKS
EXAMPLE
Non-isomorphic representatives of the a(1) = 1 through a(4) = 11 multiset partitions:
1: {{1}}
2: {{1,1}}
{{1}, {2}}
3: {{1,1,1}}
{{1}, {2,2}}
{{2}, {1,2}}
{{1}, {2},{3}}
4: {{1,1,1,1}}
{{1}, {1,2,2}}
{{1}, {2,2,2}}
{{2}, {1,2,2}}
{{1,1}, {2,2}}
{{1,2}, {1,2}}
{{1,2}, {2,2}}
{{1}, {1}, {2,3}}
{{1}, {2}, {3,3}}
{{1}, {3}, {2,3}}
{{1}, {2}, {3}, {4}}
Non-isomorphic representatives of the a(4) = 11 square matrices:
. [4]
.
. [1 0] [1 0] [0 1] [2 0] [1 1] [1 1]
. [1 2] [0 3] [1 2] [0 2] [1 1] [0 2]
.
. [1 0 0] [1 0 0] [1 0 0]
. [1 0 0] [0 1 0] [0 0 1]
. [0 1 1] [0 0 2] [0 1 1]
.
. [1 0 0 0]
. [0 1 0 0]
. [0 0 1 0]
. [0 0 0 1]
MATHEMATICA
(* See A318795 for M[m, n, k]. *)
T[n_, k_] := M[k, k, n] - 2 M[k, k-1, n] + M[k-1, k-1, n];
a[0] = 1; a[n_] := Sum[T[n, k], {k, 1, n}];
Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 16}] (* Jean-François Alcover, Nov 24 2018, after Andrew Howroyd *)
PROG
(PARI) \\ See A318795 for M.
a(n) = {if(n==0, 1, sum(i=1, n, M(i, i, n) - 2*M(i, i-1, n) + M(i-1, i-1, n)))} \\ Andrew Howroyd, Nov 15 2018
(PARI) \\ See A340652 for G.
seq(n)={Vec(1 + sum(k=1, n, polcoef(G(k, n, n, y), k, y) - polcoef(G(k-1, n, n, y), k, y)))} \\ Andrew Howroyd, Jan 15 2024
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 25 2018
EXTENSIONS
a(11)-a(20) from Andrew Howroyd, Nov 15 2018
a(21) onwards from Andrew Howroyd, Jan 15 2024
STATUS
approved
Number of non-isomorphic multiset partitions of weight n in which (1) all parts have the same size and (2) each vertex appears the same number of times.
+10
47
1, 1, 4, 4, 10, 4, 21, 4, 26, 13, 28, 4, 128, 4, 39, 84, 150, 4, 358, 4, 956, 513, 86, 4, 12549, 1864, 134, 9582, 52366, 4, 301086, 4, 1042038, 407140, 336, 4690369, 61738312, 4, 532, 28011397, 2674943885, 4, 819150246, 4, 54904825372, 65666759973, 1303, 4, 4319823776760
OFFSET
0,3
COMMENTS
a(p) = 4 for p prime. - Charlie Neder, Oct 15 2018
LINKS
EXAMPLE
Non-isomorphic representatives of the a(1) = 1 through a(6) = 21 multiset partitions:
(1) (11) (111) (1111) (11111) (111111)
(12) (123) (1122) (12345) (111222)
(1)(1) (1)(1)(1) (1234) (1)(1)(1)(1)(1) (112233)
(1)(2) (1)(2)(3) (11)(11) (1)(2)(3)(4)(5) (123456)
(11)(22) (111)(111)
(12)(12) (111)(222)
(12)(34) (112)(122)
(1)(1)(1)(1) (112)(233)
(1)(1)(2)(2) (123)(123)
(1)(2)(3)(4) (123)(456)
(11)(11)(11)
(11)(12)(22)
(11)(22)(33)
(11)(23)(23)
(12)(12)(12)
(12)(13)(23)
(12)(34)(56)
(1)(1)(1)(1)(1)(1)
(1)(1)(1)(2)(2)(2)
(1)(1)(2)(2)(3)(3)
(1)(2)(3)(4)(5)(6)
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 10 2018
EXTENSIONS
Terms a(12) and beyond from Andrew Howroyd, Feb 03 2022
STATUS
approved
Number of non-isomorphic T_0 set systems of weight n.
+10
42
1, 1, 1, 2, 4, 7, 16, 35, 82, 200, 517
OFFSET
0,4
COMMENTS
In a set system, two vertices are equivalent if in every block the presence of the first is equivalent to the presence of the second. The T_0 condition means that there are no equivalent vertices.
The weight of a set system is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
EXAMPLE
Non-isomorphic representatives of the a(1) = 1 through a(5) = 7 set systems:
1: {{1}}
2: {{1},{2}}
3: {{2},{1,2}}
{{1},{2},{3}}
4: {{1,3},{2,3}}
{{1},{2},{1,2}}
{{1},{3},{2,3}}
{{1},{2},{3},{4}}
5: {{1},{2,4},{3,4}}
{{2},{3},{1,2,3}}
{{2},{1,3},{2,3}}
{{3},{1,3},{2,3}}
{{1},{2},{3},{2,3}}
{{1},{2},{4},{3,4}}
{{1},{2},{3},{4},{5}}
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Sep 23 2018
STATUS
approved
Number of non-isomorphic weight-n chains of distinct multisets whose dual is also a chain of distinct multisets.
+10
37
1, 1, 1, 4, 4, 9, 17, 28, 41, 75, 122, 192, 314, 484, 771, 1216, 1861, 2848, 4395, 6610, 10037
OFFSET
0,4
COMMENTS
The dual of a multiset partition has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
From Gus Wiseman, Jan 17 2019: (Start)
Also the number of plane partitions of n with no repeated rows or columns. For example, the a(6) = 17 plane partitions are:
6 51 42 321
.
5 4 41 31 32 31 22 221 211
1 2 1 2 1 11 2 1 11
.
3 21 21 111
2 2 11 11
1 1 1 1
(End)
EXAMPLE
Non-isomorphic representatives of the a(1) = 1 through a(5) = 9 chains:
1: {{1}}
2: {{1,1}}
3: {{1,1,1}}
{{1,2,2}}
{{1},{1,1}}
{{2},{1,2}}
4: {{1,1,1,1}}
{{1,2,2,2}}
{{1},{1,1,1}}
{{2},{1,2,2}}
5: {{1,1,1,1,1}}
{{1,1,2,2,2}}
{{1,2,2,2,2}}
{{1},{1,1,1,1}}
{{2},{1,1,2,2}}
{{2},{1,2,2,2}}
{{1,1},{1,1,1}}
{{1,2},{1,2,2}}
{{2,2},{1,2,2}}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
ptnplane[n_]:=Union[Map[Reverse@*primeMS, Join@@Permutations/@facs[n], {2}]];
Table[Sum[Length[Select[ptnplane[Times@@Prime/@y], And[UnsameQ@@#, UnsameQ@@Transpose[PadRight[#]], And@@GreaterEqual@@@#, And@@(GreaterEqual@@@Transpose[PadRight[#]])]&]], {y, IntegerPartitions[n]}], {n, 10}] (* Gus Wiseman, Jan 18 2019 *)
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Sep 25 2018
EXTENSIONS
a(11)-a(17) from Gus Wiseman, Jan 18 2019
a(18)-a(21) from Robert Price, Jun 21 2021
STATUS
approved
The squarefree dual of a multiset partition has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex, counted without multiplicity. Then a(n) is the number of non-isomorphic multiset partitions of weight n whose squarefree dual is strict (no repeated blocks).
+10
33
1, 1, 3, 7, 21, 55, 169, 496, 1582, 5080, 17073
OFFSET
0,3
COMMENTS
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
EXAMPLE
Non-isomorphic representatives of the a(1) = 1, a(2) = 3, and a(3) = 7 multiset partitions:
1: {{1}}
2: {{1,1}}
{{1},{1}}
{{1},{2}}
3: {{1,1,1}}
{{1},{1,1}}
{{1},{2,2}}
{{2},{1,2}}
{{1},{1},{1}}
{{1},{2},{2}}
{{1},{2},{3}}
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Sep 23 2018
STATUS
approved
Number of non-isomorphic weight-n antichains of (not necessarily distinct) multisets whose dual is also an antichain of (not necessarily distinct) multisets.
+10
32
1, 1, 4, 7, 19, 32, 81, 142, 337, 659, 1564
OFFSET
0,3
COMMENTS
The dual of a multiset partition has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
EXAMPLE
Non-isomorphic representatives of the a(1) = 1 through a(3) = 7 antichains:
1: {{1}}
2: {{1,1}}
{{1,2}}
{{1},{1}}
{{1},{2}}
3: {{1,1,1}}
{{1,2,3}}
{{1},{2,2}}
{{1},{2,3}}
{{1},{1},{1}}
{{1},{2},{2}}
{{1},{2},{3}}
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Sep 25 2018
STATUS
approved
Number of factorizations of n into factors > 1 with no equivalent primes.
+10
29
1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 4, 1, 1, 1, 5, 1, 4, 1, 4, 1, 1, 1, 7, 2, 1, 3, 4, 1, 1, 1, 7, 1, 1, 1, 7, 1, 1, 1, 7, 1, 1, 1, 4, 4, 1, 1, 12, 2, 4, 1, 4, 1, 7, 1, 7, 1, 1, 1, 7, 1, 1, 4, 11, 1, 1, 1, 4, 1, 1, 1, 16, 1, 1, 4, 4, 1, 1, 1, 12, 5, 1, 1, 7, 1, 1
OFFSET
1,4
COMMENTS
In a factorization, two primes are equivalent if each factor has in its prime factorization the same multiplicity of both primes.
FORMULA
a(prime^n) = A000041(n).
a(squarefree) = 1.
EXAMPLE
The a(36) = 7 factorizations are (2*2*3*3), (2*2*9), (2*3*6), (3*3*4), (2*18), (3*12), (4*9). Missing from this list are (6*6) and (36).
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
dual[eds_]:=Table[First/@Position[eds, x], {x, Union@@eds}];
Table[Length[Select[facs[n], UnsameQ@@dual[primeMS/@#]&]], {n, 100}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 18 2018
STATUS
approved
Number of non-isomorphic strict connected multiset partitions of weight n.
+10
29
1, 1, 2, 5, 12, 30, 91, 256, 823, 2656, 9103, 31876, 116113, 432824, 1659692, 6508521, 26112327, 106927561, 446654187, 1900858001, 8236367607, 36306790636, 162724173883, 741105774720, 3428164417401, 16099059101049, 76722208278328, 370903316203353, 1818316254655097
OFFSET
0,3
COMMENTS
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
Also the number of non-isomorphic connected T_0 multiset partitions of weight n. In a multiset partition, two vertices are equivalent if in every block the multiplicity of the first is equal to the multiplicity of the second. The T_0 condition means that there are no equivalent vertices.
LINKS
FORMULA
Inverse Euler transform of A316980.
EXAMPLE
Non-isomorphic representatives of the a(4) = 12 strict connected multiset partitions:
{{1,1,1,1}}
{{1,1,2,2}}
{{1,2,2,2}}
{{1,2,3,3}}
{{1,2,3,4}}
{{1},{1,1,1}}
{{1},{1,2,2}}
{{2},{1,2,2}}
{{3},{1,2,3}}
{{1,2},{2,2}}
{{1,3},{2,3}}
{{1},{2},{1,2}}
Non-isomorphic representatives of the a(4) = 12 connected T_0 multiset partitions:
{{1,1,1,1}}
{{1,2,2,2}}
{{1},{1,1,1}}
{{1},{1,2,2}}
{{2},{1,2,2}}
{{1,1},{1,1}}
{{1,2},{2,2}}
{{1,3},{2,3}}
{{1},{1},{1,1}}
{{1},{2},{1,2}}
{{2},{2},{1,2}}
{{1},{1},{1},{1}}
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 23 2018
EXTENSIONS
Terms a(11) and beyond from Andrew Howroyd, Jan 19 2023
STATUS
approved

Search completed in 0.040 seconds