[go: up one dir, main page]

login
Search: a316983 -id:a316983
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of non-isomorphic strict multiset partitions of weight n.
+10
104
1, 1, 3, 8, 23, 63, 197, 588, 1892, 6140, 20734, 71472, 254090, 923900, 3446572, 13149295, 51316445, 204556612, 832467052, 3455533022, 14621598811, 63023667027, 276559371189, 1234802595648, 5606647482646, 25875459311317, 121324797470067, 577692044073205
OFFSET
0,3
COMMENTS
Also the number of nonnegative integer n X n matrices with sum of elements equal to n, under row and column permutations, with no equal rows (or alternatively, with no equal columns).
Also the number of non-isomorphic multiset partitions of weight n with no equivalent vertices. In a multiset partition, two vertices are equivalent if in every block the multiplicity of the first is equal to the multiplicity of the second.
LINKS
FORMULA
Euler transform of A319557. - Gus Wiseman, Sep 23 2018
EXAMPLE
Non-isomorphic representatives of the a(3) = 8 multiset partitions with no equivalent vertices (first column) and with no equal blocks (second column):
(111) <-> (111)
(122) <-> (1)(11)
(1)(11) <-> (122)
(1)(22) <-> (1)(22)
(2)(12) <-> (2)(12)
(1)(1)(1) <-> (123)
(1)(2)(2) <-> (1)(23)
(1)(2)(3) <-> (1)(2)(3)
PROG
(PARI)
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
K(q, t, k)={EulerT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k))}
a(n)={if(n==0, 1, my(s=0); forpart(q=n, my(p=sum(t=1, n, subst(x*Ser(K(q, t, n\t))/t, x, x^t))); s+=permcount(q)*polcoef(exp(p-subst(p, x, x^2)), n)); s/n!)} \\ Andrew Howroyd, Jan 21 2023
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 18 2018
EXTENSIONS
a(7)-a(10) from Gus Wiseman, Sep 23 2018
Terms a(11) and beyond from Andrew Howroyd, Jan 19 2023
STATUS
approved
Number of non-isomorphic square multiset partitions of weight n.
+10
99
1, 1, 2, 4, 11, 27, 80, 230, 719, 2271, 7519, 25425, 88868, 317972, 1168360, 4392724, 16903393, 66463148, 266897917, 1093550522, 4568688612, 19448642187, 84308851083, 371950915996, 1669146381915, 7615141902820, 35304535554923, 166248356878549, 794832704948402, 3856672543264073, 18984761300310500
OFFSET
0,3
COMMENTS
A multiset partition or hypergraph is square if its length (number of blocks or edges) is equal to its number of vertices.
Also the number of square integer matrices with entries summing to n and no empty rows or columns, up to permutation of rows and columns.
LINKS
EXAMPLE
Non-isomorphic representatives of the a(1) = 1 through a(4) = 11 multiset partitions:
1: {{1}}
2: {{1,1}}
{{1}, {2}}
3: {{1,1,1}}
{{1}, {2,2}}
{{2}, {1,2}}
{{1}, {2},{3}}
4: {{1,1,1,1}}
{{1}, {1,2,2}}
{{1}, {2,2,2}}
{{2}, {1,2,2}}
{{1,1}, {2,2}}
{{1,2}, {1,2}}
{{1,2}, {2,2}}
{{1}, {1}, {2,3}}
{{1}, {2}, {3,3}}
{{1}, {3}, {2,3}}
{{1}, {2}, {3}, {4}}
Non-isomorphic representatives of the a(4) = 11 square matrices:
. [4]
.
. [1 0] [1 0] [0 1] [2 0] [1 1] [1 1]
. [1 2] [0 3] [1 2] [0 2] [1 1] [0 2]
.
. [1 0 0] [1 0 0] [1 0 0]
. [1 0 0] [0 1 0] [0 0 1]
. [0 1 1] [0 0 2] [0 1 1]
.
. [1 0 0 0]
. [0 1 0 0]
. [0 0 1 0]
. [0 0 0 1]
MATHEMATICA
(* See A318795 for M[m, n, k]. *)
T[n_, k_] := M[k, k, n] - 2 M[k, k-1, n] + M[k-1, k-1, n];
a[0] = 1; a[n_] := Sum[T[n, k], {k, 1, n}];
Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 16}] (* Jean-François Alcover, Nov 24 2018, after Andrew Howroyd *)
PROG
(PARI) \\ See A318795 for M.
a(n) = {if(n==0, 1, sum(i=1, n, M(i, i, n) - 2*M(i, i-1, n) + M(i-1, i-1, n)))} \\ Andrew Howroyd, Nov 15 2018
(PARI) \\ See A340652 for G.
seq(n)={Vec(1 + sum(k=1, n, polcoef(G(k, n, n, y), k, y) - polcoef(G(k-1, n, n, y), k, y)))} \\ Andrew Howroyd, Jan 15 2024
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 25 2018
EXTENSIONS
a(11)-a(20) from Andrew Howroyd, Nov 15 2018
a(21) onwards from Andrew Howroyd, Jan 15 2024
STATUS
approved
Number of n-vertex labeled simple graphs with n edges and no isolated vertices.
+10
52
1, 0, 0, 1, 15, 222, 3760, 73755, 1657845, 42143500, 1197163134, 37613828070, 1295741321875, 48577055308320, 1969293264235635, 85852853154670693, 4005625283891276535, 199166987259400191480, 10513996906985414443720, 587316057411626070658200, 34612299496604684775762261
OFFSET
0,5
LINKS
FORMULA
Binomial transform is A367862.
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * binomial(binomial(k,2), n). - Andrew Howroyd, Dec 29 2023
EXAMPLE
Non-isomorphic representatives of the a(4) = 15 graphs:
{{1,2},{1,3},{1,4},{2,3}}
{{1,2},{1,3},{2,4},{3,4}}
MATHEMATICA
Table[Length[Select[Subsets[Subsets[Range[n], {2}]], Union@@#==Range[n]&&Length[#]==n&]], {n, 0, 5}]
PROG
(PARI) a(n) = sum(k=0, n, (-1)^(n-k) * binomial(n, k) * binomial(binomial(k, 2), n)) \\ Andrew Howroyd, Dec 29 2023
CROSSREFS
The connected case is A057500, unlabeled A001429.
The unlabeled version is A006649.
The non-covering version is A116508.
For set-systems we have A367916, ranks A367917.
A001187 counts connected graphs, A001349 unlabeled.
A006125 counts graphs, A000088 unlabeled.
A006129 counts covering graphs, A002494 unlabeled.
A058891 counts set-systems, unlabeled A000612, without singletons A016031.
A059201 counts covering T_0 set-systems, unlabeled A319637, ranks A326947.
A133686 = graphs satisfy strict AoC, connected A129271, covering A367869.
A143543 counts simple labeled graphs by number of connected components.
A323818 counts connected set-systems, unlabeled A323819, ranks A326749.
A367867 = graphs contradict strict AoC, connected A140638, covering A367868.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 07 2023
EXTENSIONS
Terms a(8) and beyond from Andrew Howroyd, Dec 29 2023
STATUS
approved
Number of non-isomorphic multiset partitions of weight n in which (1) all parts have the same size and (2) each vertex appears the same number of times.
+10
47
1, 1, 4, 4, 10, 4, 21, 4, 26, 13, 28, 4, 128, 4, 39, 84, 150, 4, 358, 4, 956, 513, 86, 4, 12549, 1864, 134, 9582, 52366, 4, 301086, 4, 1042038, 407140, 336, 4690369, 61738312, 4, 532, 28011397, 2674943885, 4, 819150246, 4, 54904825372, 65666759973, 1303, 4, 4319823776760
OFFSET
0,3
COMMENTS
a(p) = 4 for p prime. - Charlie Neder, Oct 15 2018
LINKS
EXAMPLE
Non-isomorphic representatives of the a(1) = 1 through a(6) = 21 multiset partitions:
(1) (11) (111) (1111) (11111) (111111)
(12) (123) (1122) (12345) (111222)
(1)(1) (1)(1)(1) (1234) (1)(1)(1)(1)(1) (112233)
(1)(2) (1)(2)(3) (11)(11) (1)(2)(3)(4)(5) (123456)
(11)(22) (111)(111)
(12)(12) (111)(222)
(12)(34) (112)(122)
(1)(1)(1)(1) (112)(233)
(1)(1)(2)(2) (123)(123)
(1)(2)(3)(4) (123)(456)
(11)(11)(11)
(11)(12)(22)
(11)(22)(33)
(11)(23)(23)
(12)(12)(12)
(12)(13)(23)
(12)(34)(56)
(1)(1)(1)(1)(1)(1)
(1)(1)(1)(2)(2)(2)
(1)(1)(2)(2)(3)(3)
(1)(2)(3)(4)(5)(6)
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 10 2018
EXTENSIONS
Terms a(12) and beyond from Andrew Howroyd, Feb 03 2022
STATUS
approved
Number of symmetric matrices with nonnegative integer entries and without zero rows or columns such that sum of all entries is equal to n.
+10
45
1, 1, 3, 9, 33, 125, 531, 2349, 11205, 55589, 291423, 1583485, 8985813, 52661609, 319898103, 2000390153, 12898434825, 85374842121, 580479540219, 4041838056561, 28824970996809, 210092964771637, 1564766851282299, 11890096357039749, 92151199272181629
OFFSET
0,3
COMMENTS
Number of normal semistandard Young tableaux of size n, where a tableau is normal if its entries span an initial interval of positive integers. - Gus Wiseman, Feb 23 2018
LINKS
FORMULA
G.f.: Sum_{n>=0} Sum_{k=0..n} (-1)^(n-k)*C(n,k)*(1-x)^(-k)*(1-x^2)^(-C(k,2)).
G.f.: Sum_{n>=0} 2^(-n-1)*(1-x)^(-n)*(1-x^2)^(-C(n,2)). - Vladeta Jovovic, Dec 09 2009
EXAMPLE
a(4) = 33 because there are 1 such matrix of type 1 X 1, 7 matrices of type 2 X 2, 15 of type 3 X 3 and 10 of type 4 X 4, cf. A138177.
From Gus Wiseman, Feb 23 2018: (Start)
The a(3) = 9 normal semistandard Young tableaux:
1 1 2 1 3 1 2 1 1 1 2 3 1 2 2 1 1 2 1 1 1
2 3 2 2 2
3
(End)
From Gus Wiseman, Nov 14 2018: (Start)
The a(4) = 33 matrices:
[4]
.
[30][21][20][11][10][02][01]
[01][10][02][11][03][20][12]
.
[200][200][110][101][100][100][100][100][011][010][010][010][001][001][001]
[010][001][100][010][020][011][010][001][100][110][101][100][020][010][001]
[001][010][001][100][001][010][002][011][100][001][010][002][100][101][110]
.
[1000][1000][1000][1000][0100][0100][0010][0010][0001][0001]
[0100][0100][0010][0001][1000][1000][0100][0001][0100][0010]
[0010][0001][0100][0010][0010][0001][1000][1000][0010][0100]
[0001][0010][0001][0100][0001][0010][0001][0100][1000][1000]
(End)
MAPLE
gf:= proc(j) local k, n; add(add((-1)^(n-k) *binomial(n, k) *(1-x)^(-k) *(1-x^2)^(-binomial(k, 2)), k=0..n), n=0..j) end: a:= n-> coeftayl(gf(n+1), x=0, n): seq(a(n), n=0..25); # Alois P. Heinz, Sep 25 2008
MATHEMATICA
Table[Sum[SeriesCoefficient[1/(2^(k+1)*(1-x)^k*(1-x^2)^(k*(k-1)/2)), {x, 0, n}], {k, 0, Infinity}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 03 2014 *)
multsubs[set_, k_]:=If[k==0, {{}}, Join@@Table[Prepend[#, set[[i]]]&/@multsubs[Drop[set, i-1], k-1], {i, Length[set]}]]; Table[Length[Select[multsubs[Tuples[Range[n], 2], n], And[Union[First/@#]==Range[Max@@First/@#], Union[Last/@#]==Range[Max@@Last/@#], Sort[Reverse/@#]==#]&]], {n, 5}] (* Gus Wiseman, Nov 14 2018 *)
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Mar 03 2008
EXTENSIONS
More terms from Alois P. Heinz, Sep 25 2008
STATUS
approved
Number of non-isomorphic multiset partitions of weight n contradicting a strict version of the axiom of choice.
+10
39
0, 0, 1, 3, 12, 37, 133, 433, 1516, 5209, 18555
OFFSET
0,4
COMMENTS
A multiset partition is a finite multiset of finite nonempty multisets. The weight of a multiset partition is the sum of cardinalities of its elements. Weight is generally not the same as number of vertices.
The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.
EXAMPLE
Non-isomorphic representatives of the a(2) = 1 through a(4) = 12 multiset partitions:
{{1},{1}} {{1},{1,1}} {{1},{1,1,1}}
{{1},{1},{1}} {{1,1},{1,1}}
{{1},{2},{2}} {{1},{1},{1,1}}
{{1},{1},{2,2}}
{{1},{1},{2,3}}
{{1},{2},{1,2}}
{{1},{2},{2,2}}
{{2},{2},{1,2}}
{{1},{1},{1},{1}}
{{1},{1},{2},{2}}
{{1},{2},{2},{2}}
{{1},{2},{3},{3}}
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]& /@ sps[Complement[set, s]]] /@ Cases[Subsets[set], {i, ___}];
mpm[n_]:=Join@@Table[Union[Sort[Sort/@(#/.x_Integer:>s[[x]])]& /@ sps[Range[n]]], {s, Flatten[MapIndexed[Table[#2, {#1}]&, #]]& /@ IntegerPartitions[n]}];
brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{i, p[[i]]}, {i, Length[p]}])], {p, Permutations[Union@@m]}]]];
Table[Length[Union[brute/@Select[mpm[n], Select[Tuples[#], UnsameQ@@#&]=={}&]]], {n, 0, 6}]
CROSSREFS
The case of unlabeled graphs appears to be A140637, complement A134964.
These multiset partitions have ranks A355529.
The case of labeled graphs is A367867, complement A133686.
Set-systems not of this type are A367902, ranks A367906.
Set-systems of this type are A367903, ranks A367907.
For set-systems we have A368094, complement A368095.
The complement is A368098, ranks A368100, connected case A368412.
Minimal multiset partitions of this type are ranked by A368187.
The connected case is A368411.
Factorizations of this type are counted by A368413, complement A368414.
For set multipartitions we have A368421, complement A368422.
A000110 counts set partitions, non-isomorphic A000041.
A003465 counts covering set-systems, unlabeled A055621.
A007716 counts non-isomorphic multiset partitions, connected A007718.
A058891 counts set-systems, unlabeled A000612, connected A323818.
A283877 counts non-isomorphic set-systems, connected A300913.
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Dec 25 2023
STATUS
approved
Number of non-isomorphic weight-n chains of distinct multisets whose dual is also a chain of distinct multisets.
+10
37
1, 1, 1, 4, 4, 9, 17, 28, 41, 75, 122, 192, 314, 484, 771, 1216, 1861, 2848, 4395, 6610, 10037
OFFSET
0,4
COMMENTS
The dual of a multiset partition has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
From Gus Wiseman, Jan 17 2019: (Start)
Also the number of plane partitions of n with no repeated rows or columns. For example, the a(6) = 17 plane partitions are:
6 51 42 321
.
5 4 41 31 32 31 22 221 211
1 2 1 2 1 11 2 1 11
.
3 21 21 111
2 2 11 11
1 1 1 1
(End)
EXAMPLE
Non-isomorphic representatives of the a(1) = 1 through a(5) = 9 chains:
1: {{1}}
2: {{1,1}}
3: {{1,1,1}}
{{1,2,2}}
{{1},{1,1}}
{{2},{1,2}}
4: {{1,1,1,1}}
{{1,2,2,2}}
{{1},{1,1,1}}
{{2},{1,2,2}}
5: {{1,1,1,1,1}}
{{1,1,2,2,2}}
{{1,2,2,2,2}}
{{1},{1,1,1,1}}
{{2},{1,1,2,2}}
{{2},{1,2,2,2}}
{{1,1},{1,1,1}}
{{1,2},{1,2,2}}
{{2,2},{1,2,2}}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
ptnplane[n_]:=Union[Map[Reverse@*primeMS, Join@@Permutations/@facs[n], {2}]];
Table[Sum[Length[Select[ptnplane[Times@@Prime/@y], And[UnsameQ@@#, UnsameQ@@Transpose[PadRight[#]], And@@GreaterEqual@@@#, And@@(GreaterEqual@@@Transpose[PadRight[#]])]&]], {y, IntegerPartitions[n]}], {n, 10}] (* Gus Wiseman, Jan 18 2019 *)
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Sep 25 2018
EXTENSIONS
a(11)-a(17) from Gus Wiseman, Jan 18 2019
a(18)-a(21) from Robert Price, Jun 21 2021
STATUS
approved
Number of non-isomorphic set-systems of weight n contradicting a strict version of the axiom of choice.
+10
35
0, 0, 0, 0, 1, 1, 5, 12, 36, 97, 291
OFFSET
0,7
COMMENTS
A set-system is a finite set of finite nonempty sets. The weight of a set-system is the sum of cardinalities of its elements. Weight is generally not the same as number of vertices.
The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.
EXAMPLE
Non-isomorphic representatives of the a(5) = 1 through a(7) = 12 set-systems:
{{1},{2},{3},{2,3}} {{1},{2},{1,3},{2,3}} {{1},{2},{1,2},{3,4,5}}
{{1},{2},{3},{1,2,3}} {{1},{3},{2,3},{1,2,3}}
{{2},{3},{1,3},{2,3}} {{1},{4},{1,4},{2,3,4}}
{{3},{4},{1,2},{3,4}} {{2},{3},{2,3},{1,2,3}}
{{1},{2},{3},{4},{3,4}} {{3},{1,2},{1,3},{2,3}}
{{1},{2},{3},{1,3},{2,3}}
{{1},{2},{3},{2,4},{3,4}}
{{1},{2},{3},{4},{2,3,4}}
{{1},{3},{4},{2,4},{3,4}}
{{1},{4},{5},{2,3},{4,5}}
{{2},{3},{4},{1,2},{3,4}}
{{1},{2},{3},{4},{5},{4,5}}
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]& /@ sps[Complement[set, s]]] /@ Cases[Subsets[set], {i, ___}];
mpm[n_]:=Join@@Table[Union[Sort[Sort/@(#/.x_Integer:>s[[x]])]& /@ sps[Range[n]]], {s, Flatten[MapIndexed[Table[#2, {#1}]&, #]]& /@ IntegerPartitions[n]}];
brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{i, p[[i]]}, {i, Length[p]}])], {p, Permutations[Union@@m]}]]];
Table[Length[Union[brute/@Select[mpm[n], UnsameQ@@#&&And@@UnsameQ@@@# && Select[Tuples[#], UnsameQ@@#&]=={}&]]], {n, 0, 8}]
CROSSREFS
The case of unlabeled graphs is A140637, complement A134964.
The case of labeled graphs is A367867, complement A133686.
The labeled version is A367903, ranks A367907.
The complement is counted by A368095, connected A368410.
Repeats allowed: A368097, ranks A355529, complement A368098, ranks A368100.
Minimal multiset partitions of this type are ranked by A368187.
The connected case is A368409.
Factorizations of this type are counted by A368413, complement A368414.
Allowing repeated edges gives A368421, complement A368422.
A000110 counts set partitions, non-isomorphic A000041.
A003465 counts covering set-systems, unlabeled A055621.
A007716 counts non-isomorphic multiset partitions, connected A007718.
A058891 counts set-systems, unlabeled A000612, connected A323818.
A283877 counts non-isomorphic set-systems, connected A300913.
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Dec 23 2023
STATUS
approved
Number of n-vertex labeled simple graphs with the same number of edges as covered vertices.
+10
33
1, 1, 1, 2, 20, 308, 5338, 105298, 2366704, 60065072, 1702900574, 53400243419, 1836274300504, 68730359299960, 2782263907231153, 121137565273808792, 5645321914669112342, 280401845830658755142, 14788386825536445299398, 825378055206721558026931, 48604149005046792753887416
OFFSET
0,4
COMMENTS
Unlike the connected case (A057500), these graphs may have more than one cycle; for example, the graph {{1,2},{1,3},{1,4},{2,3},{2,4},{5,6}} has multiple cycles.
LINKS
FORMULA
Binomial transform of A367863.
EXAMPLE
Non-isomorphic representatives of the a(4) = 20 graphs:
{}
{{1,2},{1,3},{2,3}}
{{1,2},{1,3},{1,4},{2,3}}
{{1,2},{1,3},{2,4},{3,4}}
MATHEMATICA
Table[Length[Select[Subsets[Subsets[Range[n], {2}]], Length[#]==Length[Union@@#]&]], {n, 0, 5}]
PROG
(PARI) \\ Here b(n) is A367863(n)
b(n) = sum(k=0, n, (-1)^(n-k) * binomial(n, k) * binomial(binomial(k, 2), n))
a(n) = sum(k=0, n, binomial(n, k) * b(k)) \\ Andrew Howroyd, Dec 29 2023
CROSSREFS
The connected case is A057500, unlabeled A001429.
Counting all vertices (not just covered) gives A116508.
The covering case is A367863, unlabeled A006649.
For set-systems we have A367916, ranks A367917.
A001187 counts connected graphs, A001349 unlabeled.
A003465 counts covering set-systems, unlabeled A055621, ranks A326754.
A006125 counts graphs, A000088 unlabeled.
A006129 counts covering graphs, A002494 unlabeled.
A058891 counts set-systems, unlabeled A000612, without singletons A016031.
A059201 counts covering T_0 set-systems, unlabeled A319637, ranks A326947.
A133686 = graphs satisfy strict AoC, connected A129271, covering A367869.
A143543 counts simple labeled graphs by number of connected components.
A323818 counts connected set-systems, unlabeled A323819, ranks A326749.
A367867 = graphs contradict strict AoC, connected A140638, covering A367868.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 07 2023
EXTENSIONS
Terms a(8) and beyond from Andrew Howroyd, Dec 29 2023
STATUS
approved
Number of non-isomorphic weight-n antichains of (not necessarily distinct) multisets whose dual is also an antichain of (not necessarily distinct) multisets.
+10
32
1, 1, 4, 7, 19, 32, 81, 142, 337, 659, 1564
OFFSET
0,3
COMMENTS
The dual of a multiset partition has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
EXAMPLE
Non-isomorphic representatives of the a(1) = 1 through a(3) = 7 antichains:
1: {{1}}
2: {{1,1}}
{{1,2}}
{{1},{1}}
{{1},{2}}
3: {{1,1,1}}
{{1,2,3}}
{{1},{2,2}}
{{1},{2,3}}
{{1},{1},{1}}
{{1},{2},{2}}
{{1},{2},{3}}
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Sep 25 2018
STATUS
approved

Search completed in 0.057 seconds