[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a244585 -id:a244585
     Sort: relevance | references | number | modified | created      Format: long | short | data
Decimal expansion of a constant related to the asymptotics of A122400.
+10
19
3, 1, 6, 1, 0, 8, 8, 6, 5, 3, 8, 6, 5, 4, 2, 8, 8, 1, 3, 8, 3, 0, 1, 7, 2, 2, 0, 2, 5, 8, 8, 1, 3, 2, 4, 9, 1, 7, 2, 6, 3, 8, 2, 7, 7, 4, 1, 8, 8, 5, 5, 6, 3, 4, 1, 6, 2, 7, 2, 7, 8, 2, 0, 7, 5, 3, 7, 6, 9, 7, 0, 5, 9, 2, 1, 9, 3, 0, 4, 6, 1, 1, 2, 1, 9, 7, 5, 7, 4, 6, 8, 5, 4, 9, 7, 8, 4, 5, 9, 3, 2, 4, 2, 2, 7
OFFSET
1,1
FORMULA
Equals (1+exp(1/r))*r^2, where r = 0.873702433239668330496568304720719298213992... is the root of the equation exp(1/r)/r + (1+exp(1/r))*LambertW(-exp(-1/r)/r) = 0.
EXAMPLE
3.161088653865428813830172202588132491726382774188556341627278...
MATHEMATICA
r = r /. FindRoot[E^(1/r)/r + (1 + E^(1/r)) * ProductLog[-E^(-1/r)/r] == 0, {r, 3/4}, WorkingPrecision -> 120]; RealDigits[(1 + Exp[1/r])*r^2][[1]]
PROG
(PARI) r=solve(r=.8, 1, exp(1/r)/r + (1+exp(1/r))*lambertw(-exp(-1/r)/r))
(1+exp(1/r))*r^2 \\ Charles R Greathouse IV, Jun 15 2021
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, Aug 09 2018
STATUS
approved
a(n) = Sum_{k=1..n} k^(2*n-1) * k! * Stirling2(n,k).
+10
5
1, 17, 1651, 473741, 300257371, 355743405917, 706872713310331, 2182548723605418941, 9894910566488309801851, 63052832687428562206049117, 545439670961897317869306191611, 6226501736967631584015448186252541, 91619831483112536750163352484302283131
OFFSET
1,2
LINKS
FORMULA
a(n) ~ c * d^n * (n!)^3 / n^2, where d = r^3*(1+exp(2/r)) = 7.8512435106631367719817991716164612615296980032514..., r = 0.94520217245242431308104743874492469552738... is the root of the equation (1+exp(-2/r))*LambertW(-exp(-1/r)/r) = -1/r, and c = 0.15095210978787998524366903417512193343948127919...
E.g.f.: Sum_{k>=1} (exp(k^2*x) - 1)^k / k. - Seiichi Manyama, Jun 19 2024
MATHEMATICA
Table[Sum[k^(2*n-1) * k! * StirlingS2[n, k], {k, 1, n}], {n, 1, 20}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, May 08 2014
STATUS
approved
E.g.f.: exp( Sum_{n>=1} (exp(n*x) - 1)^n / n ).
+10
4
1, 1, 6, 95, 3043, 167342, 14175447, 1715544861, 280986929888, 59828264507385, 16056622678756319, 5300955907062294008, 2110872493413444115109, 997542435957462115205773, 551887323312314977683048334, 353334615697796170374209624907, 259179558930246734075836153918127
OFFSET
0,3
COMMENTS
Compare to: exp( Sum_{n>=1} (exp(x) - 1)^n/n ) = 1/(2-exp(x)), the e.g.f. of Fubini numbers (A000670).
LINKS
FORMULA
a(n) ~ c * d^n * (n!)^2 / n^(3/2), where d = A317855 = (1+exp(1/r))*r^2 = 3.161088653865428813830172202588132491..., r = 0.873702433239668330496568304720719298... is the root of the equation exp(1/r)/r + (1+exp(1/r)) * LambertW(-exp(-1/r)/r) = 0, and c = 0.37498840921734807101035131780130551... . - Vaclav Kotesovec, Aug 21 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + 6*x^2/2! + 95*x^3/3! + 3043*x^4/4! + 167342*x^5/5! +...
PROG
(PARI) {a(n) = n!*polcoeff( exp( sum(m=1, n+1, (exp(m*x +x*O(x^n)) - 1)^m / m) ), n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 21 2014
STATUS
approved
a(n) = Sum_{k=1..n} k! * k^(n-1) * |Stirling1(n,k)|.
+10
4
0, 1, 5, 80, 2690, 155074, 13658386, 1706098008, 286888266696, 62485391828448, 17112247116585744, 5755236604915060944, 2331975856351260982848, 1120439648590390138640304, 629855675998212293917375344, 409557081242059531918330384896
OFFSET
0,3
FORMULA
E.g.f.: Sum_{k>=1} (-log(1 - k*x))^k / k.
MATHEMATICA
nmax=15; Range[0, nmax]!CoefficientList[Series[Sum[(-Log[1 - k*x])^k / k, {k, nmax}], {x, 0, nmax}], x] (* Stefano Spezia, Jun 19 2024 *)
PROG
(PARI) a(n) = sum(k=1, n, k!*k^(n-1)*abs(stirling(n, k, 1)));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 19 2024
STATUS
approved
a(n) = Sum_{k=1..n} k! * k^(n-3) * Stirling2(n,k).
+10
4
0, 1, 2, 13, 233, 8311, 495437, 44495263, 5619239453, 949995402271, 207228784973597, 56681221280785663, 19000392210559326173, 7661410911700580500831, 3658694812581483750630557, 2042247041839449013948374463, 1317554928647608644852032652893
OFFSET
0,3
FORMULA
E.g.f.: Sum_{k>=1} (exp(k*x) - 1)^k / k^3.
PROG
(PARI) a(n) = sum(k=1, n, k!*k^(n-3)*stirling(n, k, 2));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 20 2024
STATUS
approved
a(n) = Sum_{k=1..n} k! * k^(n-1) * Stirling1(n,k).
+10
3
0, 1, 3, 32, 734, 28994, 1752046, 150262104, 17356844088, 2597710341600, 488957612319984, 113044488306692304, 31490845086661001664, 10403092187976909854640, 4021236906890850070201488, 1798052050351216209712206336, 920859156623446912386646303104
OFFSET
0,3
FORMULA
E.g.f.: Sum_{k>=1} log(1 + k*x)^k / k.
MATHEMATICA
nmax=16; Range[0, nmax]!CoefficientList[Series[Sum[(Log[1 + k*x])^k / k, {k, nmax}], {x, 0, nmax}], x] (* Stefano Spezia, Jun 19 2024 *)
PROG
(PARI) a(n) = sum(k=1, n, k!*k^(n-1)*stirling(n, k, 1));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 19 2024
STATUS
approved
a(n) = Sum_{k=1..n} k! * k^(n-2) * Stirling2(n,k).
+10
3
0, 1, 3, 31, 765, 34651, 2502213, 263824891, 38248036725, 7298877611371, 1773652375115973, 534749297993098651, 195883403209280580885, 85687658454617655817291, 44120264185381411695106533, 26413555571018242181844978811
OFFSET
0,3
FORMULA
E.g.f.: Sum_{k>=1} (exp(k*x) - 1)^k / k^2.
PROG
(PARI) a(n) = sum(k=1, n, k!*k^(n-2)*stirling(n, k, 2));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 20 2024
STATUS
approved

Search completed in 0.008 seconds