[go: up one dir, main page]

login
A373875
a(n) = Sum_{k=1..n} k! * k^(n-2) * |Stirling1(n,k)|.
3
0, 1, 3, 32, 802, 36854, 2698598, 288450168, 42388536888, 8198703649296, 2019226648157472, 616991110153816848, 229048514514263311008, 101540936651344709359632, 52984383824921037875927760, 32145394332240602286960456192
OFFSET
0,3
FORMULA
E.g.f.: Sum_{k>=1} (-log(1 - k*x))^k / k^2.
PROG
(PARI) a(n) = sum(k=1, n, k!*k^(n-2)*abs(stirling(n, k, 1)));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 20 2024
STATUS
approved