Displaying 1-10 of 19 results found.
a(n) = Sum_{k=0..n} k^n * k! * Stirling2(n,k).
+10
36
1, 1, 9, 211, 9285, 658171, 68504709, 9837380491, 1863598406805, 450247033371451, 135111441590583909, 49300373690091496171, 21495577955682021043125, 11037123350952586270549531, 6591700149366720366704735109
COMMENTS
Conjecture: Let p be prime. The sequence obtained by reducing a(n) modulo p for n >= 1 is purely periodic with period p - 1. For example, modulo 7 the sequence becomes [1, 2, 1, 3, 3, 0, 1, 2, 1, 3, 3, 0, ...], with an apparent period of 6. Cf. A338040. - Peter Bala, May 31 2022
FORMULA
E.g.f.: Sum_{n>=0} exp(n^2*x) / (1 + exp(n*x))^(n+1). - Paul D. Hanna, Oct 26 2014
E.g.f.: Sum_{n>=0} exp(-n*x) / (1 + exp(-n*x))^(n+1). - Paul D. Hanna, Oct 30 2014
O.g.f.: Sum_{n>=0} n^n * n! * x^n / Product_{k=1..n} (1 - n*k*x). - Paul D. Hanna, Jan 05 2013
Limit n->infinity (a(n)/n!)^(1/n)/n = ((1+exp(1/r))*r^2)/exp(1) = A317855/exp(1) = 1.162899527477400818845..., where r = 0.87370243323966833... is the root of the equation 1/(1+exp(-1/r)) = -r*LambertW(-exp(-1/r)/r). - Vaclav Kotesovec, Jun 21 2013
a(n) ~ c * A317855^n * (n!)^2 / sqrt(n), where c = 0.327628285569869481442286492410507030710253054522608... - Vaclav Kotesovec, Aug 09 2018
Let A(x) = 1 + x + 9*x^2/2! + 211*x^3/3! + ... denote the e.g.f. of the sequence. Let F(x) denote the series reversion of A(x) - 1 = x - 9*x^2/2 + 16*x^3/3 - 205*x^4/4 - 2714*x^5/5 - .... Then both dF/dx = 1 - 9*x + 16*x^2 - 205*x^3 - 2714*x^4 - ... and exp(F(x)) = 1 + x - 4*x^2 + x^3 - 38*x^4 - 606*x^5 - ... have integer coefficients. Note that 1 + series reversion(exp(F(x)) - 1) is the o.g.f. for A122400. - Peter Bala, Aug 09 2022
EXAMPLE
E.g.f.: A(x) = 1 + x + 9*x^2/2! + 211*x^3/3! + 9285*x^4/4! + 658171*x^5/5! + ...
such that
A(x) = 1 + (exp(x)-1) + (exp(2*x)-1)^2 + (exp(3*x)-1)^3 + (exp(4*x)-1)^4 + ...
The e.g.f. is also given by the series:
A(x) = 1/2 + exp(x)/(1+exp(x))^2 + exp(4*x)/(1+exp(2*x))^3 + exp(9*x)/(1+exp(3*x))^4 + exp(16*x)/(1+exp(4*x))^5 + exp(25*x)/(1+exp(5*x))^6 + ...
or, equivalently,
A(x) = 1/2 + exp(-x)/(1+exp(-x))^2 + exp(-2*x)/(1+exp(-2*x))^3 + exp(-3*x)/(1+exp(-3*x))^4 + exp(-4*x)/(1+exp(-4*x))^5 + exp(-5*x)/(1+exp(-5*x))^6 + ...
MAPLE
a := n -> add(k^n*k!*combinat[stirling2](n, k), k=0..n); # Max Alekseyev, Feb 01 2007
MATHEMATICA
Flatten[{1, Table[Sum[k^n*k!*StirlingS2[n, k], {k, 0, n}], {n, 1, 20}]}] (* Vaclav Kotesovec, Jun 21 2013 *)
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, m^m*m!*x^m/prod(k=1, m, 1-m*k*x+x*O(x^n))), n)}
(PARI) {a(n)=n!*polcoeff(sum(k=0, n, (exp(k*x +x*O(x^n)) - 1)^k), n)}
(PARI) /* From e.g.f. infinite series: */
\p100 \\ set precision
{A=Vec(serlaplace(sum(n=0, 500, 1.*exp(n^2*x +O(x^26))/(1 + exp(n*x +O(x^26)))^(n+1)) ))}
for(n=0, #A-1, print1(round(A[n+1]), ", ")) \\ Paul D. Hanna, Oct 30 2014
Number of square (0,1)-matrices without zero rows and with exactly n entries equal to 1.
+10
25
1, 1, 4, 31, 338, 4769, 82467, 1687989, 39905269, 1069863695, 32071995198, 1062991989013, 38596477083550, 1523554760656205, 64961391010251904, 2975343608212835855, 145687881987604377815, 7594435556630244257213
FORMULA
a(n) = (1/n!)* Sum_{k=0..n} Stirling1(n,k)* A122399(k).
G.f.: Sum_{n>=0} (1+x)^(n^2) / (1 + (1+x)^n)^(n+1). - Paul D. Hanna, Mar 23 2018
a(n) ~ c * d^n * n! / sqrt(n), where d = A317855 = (1+exp(1/r))*r^2 = 3.161088653865428813830172202588132491726382774188556341627278..., r = 0.8737024332396683304965683047207192982139922672025395099... is the root of the equation exp(1/r)/r + (1+exp(1/r))*LambertW(-exp(-1/r)/r) = 0, and c = 0.2796968489586733500739737080739303725411427162653658... . - Vaclav Kotesovec, May 07 2014
MAPLE
A122399 := proc(n) option remember ; add( combinat[stirling2](n, k)*k^n*k!, k=0..n) ; end: A122400 := proc(n) option remember ; add( combinat[stirling1](n, k)* A122399(k), k=0..n)/n! ; end: for n from 0 to 30 do printf("%d, ", A122400(n)) ; od ; # R. J. Mathar, May 18 2007
G.f. A(x) satisfies: 1 = Sum_{n>=0} ((1+x)^n - A(x))^n.
+10
18
1, 1, 1, 8, 89, 1326, 24247, 521764, 12867985, 357229785, 11017306489, 373675921093, 13825260663882, 554216064798423, 23934356706763264, 1108017262467214486, 54747529760516714323, 2876096694574711401525, 160092696678371426933342, 9413031424290635395882462, 583000844360279565483710624
COMMENTS
More generally, the following sums are equal:
(1) Sum_{n>=0} binomial(n+k-1, n) * r^n * (p + q^n)^n,
(2) Sum_{n>=0} binomial(n+k-1, n) * r^n * q^(n^2) / (1 - r*p*q^n)^(n+k),
for any fixed integer k; here, k = 1 with r = 1, p = -A(x), q = (1+x). - Paul D. Hanna, Jun 22 2019
FORMULA
G.f. A(x) satisfies:
(1) 1 = Sum_{n>=0} ((1+x)^n - A(x))^n.
(2) 1 = Sum_{n>=0} (1+x)^(n^2) / (1 + (1+x)^n*A(x))^(n+1).
a(n) ~ c * d^n * n! / sqrt(n), where d = A317855 = 3.1610886538654... and c = 0.11739505492506... - Vaclav Kotesovec, Sep 26 2020
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 8*x^3 + 89*x^4 + 1326*x^5 + 24247*x^6 + 521764*x^7 + 12867985*x^8 + 357229785*x^9 + 11017306489*x^10 + ...
such that
1 = 1 + ((1+x) - A(x)) + ((1+x)^2 - A(x))^2 + ((1+x)^3 - A(x))^3 + ((1+x)^4 - A(x))^4 + ((1+x)^5 - A(x))^5 + ((1+x)^6 - A(x))^6 + ((1+x)^7 - A(x))^7 + ...
Also,
1 = 1/(1 + A(x)) + (1+x)/(1 + (1+x)*A(x))^2 + (1+x)^4/(1 + (1+x)^2*A(x))^3 + (1+x)^9/(1 + (1+x)^3*A(x))^4 + (1+x)^16/(1 + (1+x)^4*A(x))^5 + (1+x)^25/(1 + (1+x)^5*A(x))^6 + (1+x)^36/(1 + (1+x)^6*A(x))^7 + ...
RELATED SERIES.
log(A(x)) = x + x^2/2 + 22*x^3/3 + 325*x^4/4 + 6186*x^5/5 + 137380*x^6/6 + 3478651*x^7/7 + 98674253*x^8/8 + 3096911434*x^9/9 + ...
PARTICULAR VALUES.
Although the power series A(x) diverges at x = -1/2, it may be evaluated formally.
Let t = A(-1/2) = 0.545218973635949431234950245034944106957612798888179456724264...
then t satisfies
(1) 1 = Sum_{n>=0} ( 1/2^n - t )^n.
(2) 1 = Sum_{n>=0} 2^n / ( 2^n + t )^(n+1).
Also,
A(r) = 1/2 at r = -0.54683649902292991492196620520872286547799291909992048564578...
where
(1) 1 = Sum_{n>=0} ( (1+r)^n - 1/2 )^n.
(2) 1 = Sum_{n>=0} (1+r)^(-n) / ( 1/(1+r)^n + 1/2 )^(n+1).
PROG
(PARI) {a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); A[#A] = Vec( sum(m=0, #A, ((1+x)^m - Ser(A))^m ) )[#A] ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
E.g.f.: Sum_{n>=1} (exp(n*x) - 1)^n / n.
+10
8
1, 5, 79, 2621, 149071, 12954365, 1596620719, 264914218301, 56934521042191, 15385666763366525, 5106110041462786159, 2041611328770984737981, 967972254733121945653711, 536962084044317668770841085, 344546100916295014902350596399
COMMENTS
Compare to: Sum_{n>=1} (1 - exp(-n*x))^n / n, the e.g.f. of A092552.
FORMULA
O.g.f.: Sum_{n>=1} n^(n-1) * n! * x^n / Product_{k=1..n} (1 - n*k*x).
a(n) ~ c * d^n * (n!)^2 / n^(3/2), where d = A317855 = (1+exp(1/r))*r^2 = 3.161088653865428813830172202588132491..., r = 0.873702433239668330496568304720719298... is the root of the equation exp(1/r)/r + (1+exp(1/r)) * LambertW(-exp(-1/r)/r) = 0, and c = 0.37498840921734807101035131780130551... . - Vaclav Kotesovec, Aug 21 2014
EXAMPLE
E.g.f.: A(x) = x + 5*x^2/2! + 79*x^3/3! + 2621*x^4/4! + 149071*x^5/5! +...
where
A(x) = (exp(x)-1) + (exp(2*x)-1)^2/2 + (exp(3*x)-1)^3/3 + (exp(4*x)-1)^4/4 + (exp(5*x)-1)^5/5 + (exp(6*x)-1)^6/6 + (exp(7*x)-1)^7/7 +...
Exponentiation yields:
exp(A(x)) = 1 + x + 6*x^2/2! + 95*x^3/3! + 3043*x^4/4! + 167342*x^5/5! +...+ A243802(n)*x^n/n! +...
The O.G.F. begins:
F(x) = x + 5*x^2 + 79*x^3 + 2621*x^4 + 149071*x^5 + 12954365*x^6 +...
where
F(x) = x/(1-x) + 2*2!*x^2/((1-2*x)*(1-4*x)) + 3^2*3!*x^3/((1-3*x)*(1-6*x)*(1-9*x)) + 4^3*4!*x^4/((1-4*x)*(1-8*x)*(1-12*x)*(1-16*x)) + 5^4*5!*x^5/((1-5*x)*(1-10*x)*(1-15*x)*(1-20*x)*(1-25*x)) +...
PROG
(PARI) {a(n) = n!*polcoeff( sum(m=1, n+1, (exp(m*x +x*O(x^n)) - 1)^m / m), n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n)=if(n<1, 0, polcoeff(sum(m=1, n, m^(m-1) * m! * x^m / prod(k=1, m, 1-m*k*x +x*O(x^n))), n))}
for(n=0, 20, print1(a(n), ", "))
G.f. A(x) satisfies: 1 = Sum_{n>=0} ( 1/(1-x)^n - A(x) )^n.
+10
8
1, 1, 2, 11, 117, 1735, 31853, 689043, 17079221, 476238926, 14742680162, 501584454703, 18605089712174, 747393133162471, 32332767332220442, 1498961537925543920, 74153115616699819304, 3899494667155151052688, 217246028175467702590241, 12783023090792392539557926, 792236994094236725330142276, 51585659784100723438219893047, 3520987513029712770759434038820
FORMULA
G.f. A(x) satisfies:
(1) 1 = Sum_{n>=0} ( 1/(1-x)^n - A(x) )^n.
(2) 1 = Sum_{n>=0} ( 1 - (1-x)^n*A(x) )^n / (1-x)^(n^2).
(3) 1 = Sum_{n>=0} (1-x)^n / ( (1-x)^n + A(x) )^(n+1).
a(n) ~ c * d^n * n! / sqrt(n), where d = A317855 = 3.16108865386542881383... and c = 0.16107844724485... - Vaclav Kotesovec, Oct 14 2020
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 11*x^3 + 117*x^4 + 1735*x^5 + 31853*x^6 + 689043*x^7 + 17079221*x^8 + 476238926*x^9 + 14742680162*x^10 + 501584454703*x^11 + ...
is such that
1 = 1 + (1/(1-x) - A(x)) + (1/(1-x)^2 - A(x))^2 + (1/(1-x)^3 - A(x))^3 + (1/(1-x)^4 - A(x))^4 + (1/(1-x)^5 - A(x))^5 + (1/(1-x)^6 - A(x))^6 + (1/(1-x)^7 - A(x))^7 + ...
Also,
1 = 1/(1 + A(x)) + (1-x)/((1-x) + A(x))^2 + (1-x)^2/((1-x)^2 + A(x))^3 + (1-x)^3/((1-x)^3 + A(x))^4 + (1-x)^4/((1-x)^4 + A(x))^5 + (1-x)^5/((1-x)^5 + A(x))^6 + (1-x)^6/((1-x)^6 + A(x))^7 + ...
PARTICULAR VALUES.
Although the power series A(x) diverges at x = -1, it may be evaluated formally.
Let t = A(-1) = 0.5452189736359494312349502450349441069576127988881794567242641...
then t satisfies
(1) 1 = Sum_{n>=0} ( 1/2^n - t )^n.
(2) 1 = Sum_{n>=0} ( 1 - 2^n*t )^n / 2^(n^2).
(3) 1 = Sum_{n>=0} 2^n / ( 2^n + t )^(n+1).
PROG
(PARI) {a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); A[#A] = Vec( sum(m=0, #A, (1/(1-x +x^2*O(x^n))^m - Ser(A))^m ) )[#A] ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
a(n) = Sum_{k=0..n} (k-1)^n*k!*Stirling2(n,k).
+10
6
1, 0, 2, 54, 2534, 186030, 19794662, 2885980734, 552803552534, 134687987183790, 40686498089484422, 14925683377452413214, 6536580413039406774134, 3368723388994026165415950, 2018248855531992511720945382, 1390953089533285777007059354494, 1092714503596231472933813958469334
FORMULA
E.g.f.: Sum((exp((n-1)*x)-1)^n, n=0..infinity).
a(n) ~ c * d^n * (n!)^2 / sqrt(n), where d = A317855 = (1+exp(1/r))*r^2 = 3.161088653865428813830172202588132491726382774188556341627278..., r = 0.8737024332396683304965683047207192982139922672025395099... is the root of the equation exp(1/r)/r + (1+exp(1/r))*LambertW(-exp(-1/r)/r) = 0, and c = 0.10430562057820038909699083625848223918044424242153125547162600916636313858475 ... . - Vaclav Kotesovec, May 07 2014
MAPLE
A122418 := proc(n) sum((k-1)^n*k!*combinat[stirling2](n, k), k=0..n) ; end; for n from 0 to 16 do print( A122418(n)) ; od ; # R. J. Mathar, Feb 10 2007
MATHEMATICA
a[n_] := Sum[ (k-1)^n*k!*StirlingS2[n, k], {k, 0, n}]; Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Mar 26 2013 *)
PROG
(PARI) for(n=0, 50, print1(sum(k=0, n, (k-1)^n*k!*stirling(n, k, 2)), ", ")) \\ G. C. Greubel, Nov 15 2017
G.f.: Sum_{n>=0} ((1+x)^(2*n) - 1)^n.
+10
5
1, 2, 17, 264, 5784, 163610, 5667551, 232280480, 10991951114, 589780778314, 35379149504709, 2346218124687516, 170439977706143335, 13459938431949414118, 1148107512505151099653, 105194122765096703619248, 10303686044959088279454117, 1074408525677705370497704526, 118828297870115694372235974855, 13893778686151373846512389392672, 1712370237144948501135060958863978
FORMULA
G.f.: Sum_{n>=0} (1+x)^(2*n^2) /(1 + (1+x)^(2*n))^(n+1).
a(n) ~ c * d^n * n! / sqrt(n), where d = 2* A317855 = 6.3221773077308576276603444051762649834527655483771126832545564150753941184386... and c = 0.302715376391132275494451399946850989516917... - Vaclav Kotesovec, Aug 09 2018
EXAMPLE
G.f.: A(x) = 1 + 2*x + 17*x^2 + 264*x^3 + 5784*x^4 + 163610*x^5 + 5667551*x^6 + 232280480*x^7 + 10991951114*x^8 + 589780778314*x^9 + ...
such that
A(x) = 1 + ((1+x)^2-1) + ((1+x)^4-1)^2 + ((1+x)^6-1)^3 + ((1+x)^8-1)^4 + ((1+x)^10-1)^5 + ((1+x)^12-1)^6 + ((1+x)^14-1)^7 + ...
Also,
A(x) = 1/2 + (1+x)^2/(1 + (1+x)^2)^2 + (1+x)^8/(1 + (1+x)^4)^3 + (1+x)^18/(1 + (1+x)^6)^4 + (1+x)^32/(1 + (1+x)^8)^5 + (1+x)^50/(1 + (1+x)^10)^6 + ...
PROG
(PARI) {a(n) = my(A, o=x*O(x^n)); A = sum(m=0, n, ((1+x +o)^(2*m) - 1)^m ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
Number of labeled digraphs with n arcs and with no vertex of indegree 0.
+10
4
1, 0, 1, 8, 93, 1354, 23900, 496244, 11855700, 320428318, 9667220397, 322072882348, 11744421711587, 465270864839688, 19899234175413257, 913836170567749048, 44849438199960187278, 2342666125012348876152
FORMULA
a(n) = (1/n!)*Sum_{k=0..n} Stirling1(n,k)* A122418(k).
G.f.: Sum_{n>=0} ((1+x)^(n-1) - 1)^n.
a(n) ~ c * d^n * n! / sqrt(n), where d = A317855 = (1+exp(1/r))*r^2 = 3.161088653865428813830172202588132491726382774188556341627278..., r = 0.8737024332396683304965683047207192982139922672025395099... is the root of the equation exp(1/r)/r + (1+exp(1/r))*LambertW(-exp(-1/r)/r) = 0, and c = 0.08904589343883135100956914504938... . - Vaclav Kotesovec, May 07 2014
MAPLE
A122418 := proc(n) option remember ; add( combinat[stirling2](n, k)*(k-1)^n*k!, k=0..n) ; end: A122419 := proc(n) option remember ; add( combinat[stirling1](n, k)* A122418(k), k=0..n)/n! ; end: for n from 0 to 30 do printf("%d, ", A122419(n)) ; od ; # R. J. Mathar, May 18 2007
MATHEMATICA
nmax=20; CoefficientList[Series[Sum[((1+x)^(n-1)-1)^n, {n, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, May 06 2014 *)
Number of labeled directed multigraphs with n arcs and with no vertex of indegree 0.
+10
4
1, 0, 1, 10, 120, 1778, 31685, 661940, 15882128, 430607370, 13022755068, 434697574538, 15875944361864, 629756003982336, 26963278837704185, 1239382820431888898, 60875147436141987437, 3181961834442383306068
FORMULA
a(n) = (1/n!)*Sum_{k=0..n} |Stirling1(n,k)|* A122418(k). G.f.: A(x/(1-x)) where A(x) is g.f. for A122419.
a(n) ~ c * d^n * n! / sqrt(n), where d = A317855 = (1+exp(1/r))*r^2 = 3.161088653865428813830172202588132491726382774188556341627278..., r = 0.8737024332396683304965683047207192982139922672025395099... is the root of the equation exp(1/r)/r + (1+exp(1/r))*LambertW(-exp(-1/r)/r) = 0, and c = 0.1221803955695846906452721220983425... . - Vaclav Kotesovec, May 07 2014
MAPLE
A122418 := proc(n) option remember ; add( combinat[stirling2](n, k)*(k-1)^n*k!, k=0..n) ; end: A122420 := proc(n) option remember ; add( abs(combinat[stirling1](n, k))* A122418(k), k=0..n)/n! ; end: for n from 0 to 30 do printf("%d, ", A122420(n)) ; od ; # R. J. Mathar, May 18 2007
MATHEMATICA
Table[1/n!*Sum[Abs[StirlingS1[n, k]]*Sum[(m-1)^k*m!*StirlingS2[k, m], {m, 0, k}], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 07 2014 *)
E.g.f.: exp( Sum_{n>=1} (exp(n*x) - 1)^n / n ).
+10
4
1, 1, 6, 95, 3043, 167342, 14175447, 1715544861, 280986929888, 59828264507385, 16056622678756319, 5300955907062294008, 2110872493413444115109, 997542435957462115205773, 551887323312314977683048334, 353334615697796170374209624907, 259179558930246734075836153918127
COMMENTS
Compare to: exp( Sum_{n>=1} (exp(x) - 1)^n/n ) = 1/(2-exp(x)), the e.g.f. of Fubini numbers ( A000670).
FORMULA
a(n) ~ c * d^n * (n!)^2 / n^(3/2), where d = A317855 = (1+exp(1/r))*r^2 = 3.161088653865428813830172202588132491..., r = 0.873702433239668330496568304720719298... is the root of the equation exp(1/r)/r + (1+exp(1/r)) * LambertW(-exp(-1/r)/r) = 0, and c = 0.37498840921734807101035131780130551... . - Vaclav Kotesovec, Aug 21 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + 6*x^2/2! + 95*x^3/3! + 3043*x^4/4! + 167342*x^5/5! +...
PROG
(PARI) {a(n) = n!*polcoeff( exp( sum(m=1, n+1, (exp(m*x +x*O(x^n)) - 1)^m / m) ), n)}
for(n=0, 20, print1(a(n), ", "))
Search completed in 0.010 seconds
|