[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317340
G.f. A(x) satisfies: 1+x = Sum_{n>=0} ((1+x)^(n+1) - A(x))^n.
3
1, 1, 5, 19, 215, 3221, 60255, 1328529, 33525557, 949932155, 29820028655, 1026798211345, 38478492170097, 1559272992752559, 67959179777259427, 3170787800382000429, 157723858411070076821, 8334021579932292731707, 466249346920348934320021, 27536331208734157654465035, 1712202839967112789793314087, 111816679758439520925160452089
OFFSET
0,3
LINKS
FORMULA
G.f. A(x) satisfies:
(1) 1+x = Sum_{n>=0} ((1+x)^(n+1) - A(x))^n.
(2) 1+x = Sum_{n>=0} (1+x)^(n*(n+1)) / (1 + (1+x)^n*A(x))^(n+1).
a(n) ~ c * r^(2*n) * (1 + exp(1/r))^n * n^n / exp(n), where r = 0.8737024332396683304965683047207192982139922672025395099... is the root of the equation (1 + exp(-1/r)) * LambertW(-exp(-1/r)/r) = -1/r, and c = 0.9243009841585606... - Vaclav Kotesovec, Aug 06 2018
EXAMPLE
G.f.: A(x) = 1 + x + 5*x^2 + 19*x^3 + 215*x^4 + 3221*x^5 + 60255*x^6 + 1328529*x^7 + 33525557*x^8 + 949932155*x^9 + 29820028655*x^10 + ...
such that
1+x = 1 + ((1+x)^2 - A(x)) + ((1+x)^3 - A(x))^2 + ((1+x)^4 - A(x))^3 + ((1+x)^5 - A(x))^4 + ((1+x)^6 - A(x))^5 + ((1+x)^7 - A(x))^6 + ((1+x)^8 - A(x))^7 + ...
Also,
1+x = 1/(1 + A(x)) + (1+x)^2/(1 + (1+x)*A(x))^2 + (1+x)^6/(1 + (1+x)^2*A(x))^3 + (1+x)^12/(1 + (1+x)^3*A(x))^4 + (1+x)^20/(1 + (1+x)^4*A(x))^5 + (1+x)^30/(1 + (1+x)^5*A(x))^6 + (1+x)^42/(1 + (1+x)^6*A(x))^7 + ...
PROG
(PARI) {a(n) = my(A=[1, 1]); for(i=0, n, A=concat(A, 0); A[#A] = Vec( sum(m=0, #A, ((1+x)^(m+1) - Ser(A))^m ) )[#A] ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A123281 A135171 A058765 * A328716 A067967 A362281
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 02 2018
STATUS
approved