Displaying 1-3 of 3 results found.
page
1
Decimal expansion of the surface area of a tetrakis hexahedron with unit shorter edge length.
+0
0
1, 1, 9, 2, 5, 6, 9, 5, 8, 7, 9, 9, 9, 8, 8, 7, 8, 3, 8, 0, 8, 4, 8, 9, 2, 6, 2, 3, 3, 2, 3, 3, 4, 7, 3, 2, 5, 5, 6, 8, 3, 2, 9, 7, 9, 1, 7, 9, 2, 8, 1, 3, 7, 1, 9, 6, 1, 1, 1, 4, 5, 1, 9, 7, 5, 5, 2, 2, 7, 7, 8, 2, 7, 0, 0, 6, 8, 2, 9, 2, 7, 9, 6, 8, 7, 6, 8, 7, 6, 8
COMMENTS
The tetrakis hexahedron is the dual polyhedron of the truncated octahedron.
EXAMPLE
11.925695879998878380848926233233473255683297917928...
MATHEMATICA
First[RealDigits[16*Sqrt[5]/3, 10, 100]] (* or *)
First[RealDigits[PolyhedronData["TetrakisHexahedron", "SurfaceArea"], 10, 100]]
CROSSREFS
Cf. A377341 (surface area of a truncated octahedron with unit edge).
Numerators of partial sums of a series for sqrt(5)/3.
+0
2
1, 3, 21, 17, 99, 2223, 12039, 56763, 59337, 286961, 7358781, 36088473, 183146521, 181066401, 36534213, 4535753121, 22798981683, 113528187171, 113891192583, 568042152363, 14228623114839, 71035463999307, 355598139789279
COMMENTS
The alternating sums over central binomial coefficients scaled by powers of 5, r(n) = Sum_{k=0..n} (-1)^k*binomial(2*k,k)/5^k, have the limit s = lim_{n-> infinity} r(n) = sqrt(5)/3. From the expansion of 1/sqrt(1+x) for x=4/5.
FORMULA
a(n) = numerator(r(n)) with the rationals r(n) = Sum_{k=0..n} (-1)^k * binomial(2*k,k)/5^k in lowest terms.
r(n) = Sum_{k=0..n} (-1)^k*((2*k-1)!!/((2*k)!!)*(4/5)^k, n>=0, with the double factorials A001147 and A000165.
EXAMPLE
a(3)=17 because r(3) = 1 - 2/5 + 6/25 - 4/25 = 17/25 = a(3)/ A124398(3).
MAPLE
seq(numer(add((-1)^k*binomial(2*k, k)/5^k, k = 0..n)), n = 0..20); # G. C. Greubel, Dec 25 2019
MATHEMATICA
Table[Numerator[Sum[(-1)^k*(k+1)*CatalanNumber[k]/5^k, {k, 0, n}]], {n, 0, 20}] (* G. C. Greubel, Dec 25 2019 *)
PROG
(PARI) a(n) = numerator(sum(k=0, n, ((-1)^k)*binomial(2*k, k)/5^k)); \\ Michel Marcus, Aug 11 2019
(Magma) [Numerator(&+[(-1)^k*(k+1)*Catalan(k)/5^k: k in [0..n]]): n in [0..20]]; // G. C. Greubel, Dec 25 2019
(Sage) [numerator(sum((-1)^k*(k+1)*catalan_number(k)/5^k for k in (0..n))) for n in (0..20)] # G. C. Greubel, Dec 25 2019
(GAP) List([0..20], n-> NumeratorRat(Sum([0..n], k-> (-1)^k*Binomial(2*k, k)/5^k)) ); # G. C. Greubel, Dec 25 2019
Denominators of partial sums of a series for sqrt(5)/3.
+0
2
1, 5, 25, 25, 125, 3125, 15625, 78125, 78125, 390625, 9765625, 48828125, 244140625, 244140625, 48828125, 6103515625, 30517578125, 152587890625, 152587890625, 762939453125, 19073486328125, 95367431640625, 476837158203125
COMMENTS
Denominators of alternating sums over central binomial coefficients scaled by powers of 5.
For the rationals r(n) see the W. Lang link under A124397.
r(n) is not 1/3 times the rational sequence A123747/ A123748 which converges to sqrt(5).
FORMULA
a(n) = denominator(r(n)) with the rationals r(n) = Sum_{k=0..n} (-1)^k * binomial(2*k,k)/5^k, in lowest terms.
r(n) = Sum_{k=0..n} (-1)^k*((2*k-1)!!/((2*k)!!)*(4/5)^k, n>=0, with the double factorials A001147 and A000165.
EXAMPLE
a(3) = 25 because r(3)= 1 - 2/5 + 6/25 - 4/25 = 17/25 = A124397(3)/a(3).
MAPLE
seq(denom(add((-1)^k*binomial(2*k, k)/5^k, k = 0..n)), n = 0..20); # G. C. Greubel, Dec 25 2019
MATHEMATICA
Table[Denominator[Sum[(-1)^k*(k+1)*CatalanNumber[k]/5^k, {k, 0, n}]], {n, 0, 20}] (* G. C. Greubel, Dec 25 2019 *)
PROG
(PARI) a(n) = denominator(sum(k=0, n, ((-1)^k)*binomial(2*k, k)/5^k)); \\ Michel Marcus, Aug 11 2019
(Magma) [Denominator(&+[(-1)^k*(k+1)*Catalan(k)/5^k: k in [0..n]]): n in [0..20]]; // G. C. Greubel, Dec 25 2019
(Sage) [denominator(sum((-1)^k*(k+1)*catalan_number(k)/5^k for k in (0..n))) for n in (0..20)] # G. C. Greubel, Dec 25 2019
(GAP) List([0..20], n-> DenominatorRat(Sum([0..n], k-> (-1)^k*Binomial(2*k, k)/5^k)) ); # G. C. Greubel, Dec 25 2019
Search completed in 0.006 seconds
|