[go: up one dir, main page]

login
A377341
Decimal expansion of the surface area of a truncated octahedron with unit edge length.
1
2, 6, 7, 8, 4, 6, 0, 9, 6, 9, 0, 8, 2, 6, 5, 2, 7, 5, 2, 2, 3, 2, 9, 3, 5, 6, 0, 9, 8, 0, 7, 0, 4, 6, 8, 4, 0, 3, 3, 1, 3, 6, 6, 3, 0, 4, 5, 7, 2, 4, 5, 6, 7, 5, 3, 6, 6, 6, 9, 6, 8, 3, 7, 5, 3, 4, 2, 3, 1, 9, 6, 2, 0, 2, 9, 0, 5, 6, 0, 0, 4, 4, 4, 9, 7, 3, 7, 5, 4, 2
OFFSET
2,1
LINKS
Eric Weisstein's World of Mathematics, Truncated Octahedron.
FORMULA
Equals 6 + 12*sqrt(3) = 6 + 12*A002194.
EXAMPLE
26.78460969082652752232935609807046840331366304572...
MATHEMATICA
First[RealDigits[6 + 12*Sqrt[3], 10, 100]] (* or *)
First[RealDigits[PolyhedronData["TruncatedOctahedron", "SurfaceArea"], 10, 100]]
CROSSREFS
Cf. A377342 (volume), A020797 (circumradius/10), A152623 (midradius).
Cf. A010469 (analogous for a regular octahedron).
Cf. A002194.
Sequence in context: A035569 A176017 A140132 * A186504 A096909 A073005
KEYWORD
nonn,cons,easy
AUTHOR
Paolo Xausa, Oct 25 2024
STATUS
approved